
Revisiting Circuit Clogging Attacks on Tor

Eric Chan-Tin, Jiyoung Shin and Jiangmin Yu
Department of Computer Science

Oklahoma State University
{chantin, jiyoung, jiangmy}@cs.okstate.edu

Abstract—Tor is a popular anonymity-providing network used
by over 500, 000 users daily. The Tor network is made up of
volunteer relays. To anonymously connect to a server, a user
first creates a circuit, consisting of three relays, and routes
traffic through these proxies before connecting to the server.
The client is thus hidden from the server through three Tor
proxies. If the three Tor proxies used by the client could be
identified, the anonymity of the client would be reduced. One
particular way of identifying the three Tor relays in a circuit
is to perform a circuit clogging attack. This attack requires the
client to connect to a malicious server (malicious content, such
as an advertising frame, can be hosted on a popular server). The
malicious server alternates between sending bursts of data and
sending little traffic. During the burst period, the three relays
used in the circuit will take longer to relay traffic due to the
increase in processing time for the extra messages. If Tor relays
are continuously monitored through network latency probes, an
increase in network latency indicates that this Tor relay is likely
being used in that circuit. We show, through experiments on
the real Tor network, that the Tor relays in a circuit can be
identified. A detection scheme is also proposed for clients to
determine whether a circuit clogging attack is happening. The
costs for both the attack and the detection mechanism are small
and feasible in the current Tor network.

Keywords—Tor, Anonymity, Attack, Circuit Clogging, Privacy.

I. INTRODUCTION

Anonymity and censorship-resistant systems are becom-
ing more prominent due to the recent unrest in Egypt and
other countries [1]–[3]. To avoid prosecution and identification
by oppressive authorities, citizens of these countries require
a system that allow them to maintain their anonymity on
the Internet. Various anonymization-providing services exist
nowadays [4]–[10], with Tor [9], [10] being one of the most
popular ones with over 500, 000 users [11]. Tor is known
as a “low-latency” service as interactive applications such as
web-browsing, chat, and remote connections (VPN and ssh for
example) can be used on top of Tor.

A client, who wants to connect to a remote server anony-
mously, uses Tor as a proxy. All the connections and messages
go through Tor first, then to the server. Thus, the server believes
that the connection is coming from Tor, which hides who the
real client is. The Tor system is made up of a network of relays.
Each relay is a volunteer machine. The client picks three relays
from the network to form a circuit: the entry node, middle
node, and exit node. The client establishes a connection with
the entry node, then using the entry node as a proxy, extends
that connection to the middle node, and finally, extends the
same connection to the exit node. Then, the client hops through
each of the relays to connect to the server. In this case, the
server believes the connection is coming from the exit relay.

Only the entry relay knows who the client is, but believes the
destination is the middle relay.

The Tor project started around 2004 and has been growing
in popularity since. It is used by citizens of oppressive regimes,
dissidents, whistle-blowers, journalists, and governments’ mil-
itary for anonymous communication. Currently, there are over
500, 000 users [11] in Tor and over 3, 000 relay nodes [11].
The premise of anonymity relies on the three relays used by
the client to be non-colluding (especially the entry and exit
nodes). Moreover, the identity of the three relays used by a
client to connect to a server is hidden. If an adversary could
somehow identify the three relays used by a client, this breaks
some of the anonymity of the client as it reveals which three
Tor relays the client chose. It has been shown in [12], [13]
that after the Tor relays in the circuit have been identified, the
identity of the client is also leaked. Thus, deanonymizing the
three relays used by a client is the first step towards identifying
which client is communicating with which server. This has a
huge impact on Tor as the anonymity of any Tor user can be
compromised.

There exists many attacks [14]–[22] in the literature on
deanonymizing the client and the three Tor relays, such as
timing attacks, network flow attacks, and circuit clogging
attacks. In this paper, we revisit the circuit clogging attack
described in [17] and show that it is still applicable in the
current Tor network. The three relays used in Tor is called
a circuit. In a circuit clogging attack, the premise is that a
client creates a circuit and connects to a server using that
circuit. The server or parts of the content of the server (for
example an advertising frame) is malicious. The malicious
content alternates between sending a lot of data and sending
very little data. If there were a direct connection between the
client and the server, there were no issue with the extra data.
Since each Tor relay can be part of multiple circuits, when
even one circuit is busy delivering a lot of data, that Tor relay
will slow down. In this particular attack, the goal is to identify
the three relays used by a client. Every relay in the Tor network
is continuously monitored, for example, by creating a 1-hop
circuit or through system pings. When a relay slows down
during the period of sending burst data (sending a lot of data),
its monitoring will show a spike in network latency. The three
Tor relays that show an increase in network latency in the
monitoring are most likely the three relays used in the circuit
by the client.

The first described circuit clogging attack [17] on Tor
was performed a few years ago when Tor was still in its
infancy. There were only 50 Tor relays at the time, of which
13 were used to demonstrate the attack. Now, there are over
3, 000 relays and Tor is heavily used for web traffic and



bulk downloads, such as BitTorrent [23] or peer-to-peer file
download traffic. We revisit this attack and show that this
circuit clogging attack to identify the three nodes in a Tor
circuit is still applicable today. Although the authors in [19]
claimed that this attack is no longer possible, their experiments
were limited. We performed a full-scale experiment with real
Tor nodes. Our proposed circuit clogging attack and network
experiments are slightly different from the experimental setup
in [17] or [19], as shown in Section III. Section V shows that
a distinct pattern can be observed for the Tor relays in the
circuit versus Tor relays not in the circuit. The pattern shows
that during the burst period, an increase in network latency
can be observed, while during the “sleep” period, the network
latency decreases to normal. Through experiments performed
on the real Tor network, all the Tor relays used in a circuit
under a circuit clogging attack can be identified over 78%
of the time. The bandwidth required to perform the circuit
clogging attack is less than 30KB/second, and the bandwidth
needed to monitor all the 3, 000 Tor relays is 391KB/second.

A detection scheme for clients is also proposed. The
detection mechanism probes all the user’s created circuits
for timing information. If it detects a high and unexpected
increase in network latency, the user can disconnect from the
server and destroy the affected circuit. Experiments indicate
that the proposed scheme can detect over 85% of attacks. The
scheme also incurs a very low overhead, requiring less than
3KB/second extra bandwidth to operate. The scheme proposed
detects when a possible circuit-clogging attack is occurring; it
does not prevent circuit-clogging attacks.

The rest of the paper is organized as follows. Section II
gives a more detailed description of how Tor works. An outline
of related work is also provided in Section II. In Section III,
we describe the specific circuit clogging attack from [17] and
how our experiment is set up. A possible solution to identify
when a clogging attack is taking place, is given in Section IV.
The results of our experiment are shown in Section V. Finally,
in Section VI, we discuss future work and conclude.

II. BACKGROUND

We provide a more detailed description of how Tor works,
as well as, a threat model for the attack. The different attacks
on Tor to identify the client or the circuit are then outlined.

A. Tor

Tor [9], [10], released around 2004, is the second genera-
tion onion router [24]. The Tor network consists of three main
entities: directory servers, relays, and clients. The directory
servers are trusted and they keep track of all the relays in the
network. Every relay contacts the directory servers to register
itself as a relay and upload its key and configuration, such as
open ports, and advertised bandwidth. The directory servers
regularly form a consensus of all the relays, and sign the
consensus document. The servers also monitor the relays’ ad-
vertised bandwidths. Each client contacts the directory servers
to download the consensus document to obtain a list of all the
relays and their status. A client can also serve as a relay. The
directory servers are currently hard-coded in Tor, whereas the
relays are volunteer machines.

Tor works as follows. A client contacts the directory
servers and downloads the consensus document of all the
active relays. The client then needs to construct a circuit
to connect to servers on the Internet. To contact a server,
the client proxies the connection through a circuit. To build
a circuit, the client randomly selects three Tor relays: an
entry node, a middle node, and an exit node. The client first
establishes an encrypted connection with the entry node. The
client then extends that circuit, by going through the entry
node, to establish an encrypted connection with the middle
node. The client further extends the circuit by establishing
another encrypted connection with the exit relay. Encryption
and authentication of each relay are possible since every relay’s
key is part of the consensus document. Once the circuit is built,
the client uses it to proxy connections over, to contact Internet
servers. Circuits are built using onion routing, such that the
connection from the client to each of the three relays is onion-
encrypted. None of the relays see what the client is sending to
the other relays. For example, the entry node cannot tell that
the client is extending the circuit to a particular exit node, as
the message to the middle node is encrypted with the middle
node only. Figure 1 shows graphically how circuits and onion
encryption work.

Anonymity is achieved since no entity in the network
knows who the client and server are. The entry node only
knows that the client is communicating with the middle
node. The middle node knows that a machine (entry node) is
communicating with another machine (exit node). The middle
node cannot tell that it is the middle node of a circuit.
Similarly, the exit relay knows that a machine (middle node) is
communicating with a server. Finally, the server believes that
the connection is coming from the exit relay. To prevent an
adversary from potentially controlling a large fraction of entry
nodes in all circuits, a client randomly selects three Tor relays
as its entry guard nodes. This means that the client will only
pick one of these three entry guards as its first entry node
in any circuit the client creates. The middle and exit nodes
in the circuit are still randomly selected from the consensus
document. It is noted that there are over 3, 000 relays in the
Tor network, with about 800 of these relays marked as exit
relays.

Due to the heavy cost, in terms of encryption and process-
ing, in creating circuits, a client can use one circuit for multiple
connections (or streams) to different servers. By default, each
circuit is used for at least 10 minutes before it is recycled
and a new one created. If a connection is still active in a
circuit, that circuit is not destroyed but no new connections are
created through that circuit. Circuits can be created in parallel
to increase efficiency. Rate limiting is applied end-to-end using
TCP. However, Tor also implements its own rate limiting.
Every connection is associated with a token bucket. Once a
connection runs out of tokens, no new packets can be accepted
or delivered until previous packets have been received.

In Tor, every packet is a cell, and each cell’s size is 512
bytes. By default, for each relay, the size of a circuit is 1, 000
cells while the size of a stream is 500 cells. Within each circuit,
cells are scheduled in a First-In-First-Out (FIFO) fashion.
There are currently two scheduling algorithms that can be used
within each relay to decide which circuit’s cells get processed
next. The original algorithm uses round-robin to select the next
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Fig. 1. (a) Circuit creation in Tor: the client randomly selects three Tor relays in the Tor network to be its entry, middle, and exit nodes. The
same circuit can be used for different connections (called streams) to different servers. (b) Onion routing and encryption: A client connects to
the server through Tor. The client wants to send a message (blue) to the server. The client first adds a layer to the message, encrypted with
the exit node’s key (green). Then the client adds a second layer, encrypted with the middle node’s key (black), and finally, that whole message
is encrypted with the entry node’s key (red). At each step, each relay peels off its layer and forwards the message to the next relay.

cell to process. The round-robin is performed among all the
circuits. The newer algorithm uses an exponential weighted
moving average (EWMA) to determine which circuit to pro-
cess the next cell from. Each cell is weighted exponentially
based on the number of cells in each circuit. Circuits with
fewer cells thus have higher priority. This scheduling algorithm
is the recommended one from the consensus document.

B. Threat Model

The threat model in this paper is the same as that used
in the original Tor paper [10] and in the current literature
on Tor. The adversary is only local to each entity or ISP
in Tor, and is assumed to not have global capabilities. The
adversary can be either passive or active. Attackers can drop
packets, relay packets, modify packets (note that cells in Tor
are encrypted), delay packets, and passively eavesdrop on all
packets. An adversary can listen on the communications at
multiple relays, clients, and/or servers, but not all of them.
Moreover, the Tor relays, clients, and servers can be malicious
but the directory servers are honest and trusted.

C. Related Work

The current literature contains many publications de-
scribing attacks on Tor and other anonymity-providing ser-
vices [12], [15]–[20], [25]. Most of these attacks use some
sort of timing analysis to determine which relays, clients,
servers, or paths are used. The simplest attack in Tor, is for
the adversary to be in control of both the entry and exit
nodes in a circuit. Using timing information, the adversary
can correlate that the two nodes are actually part of the same
circuit, and from there, can deduce that a particular client
is communicating with a particular server. If the adversary
controls f relays out of n relays, then the probability that the
entry and exit nodes selected belong to the adversary is ( fn )

2.
This probability is even lower with the introduction of entry
guards.

In 2005, Murdoch and Danezis [17] showed a low-cost
traffic analysis attack on Tor, which allowed them to identify

the three relays used in a circuit. The attack is a variant of
the circuit clogging attack, where the adversary attempts to
overload the three relays used, which in turn, increases the
network latency timing of these three relays. Since all other
relays are unaffected, an increase in timing of network latency
of three nodes, leads the attacker to conclude that these three
nodes are the three relays in the circuit. This attack assumes
that the server or part of the content being served is controlled
by the adversary. From contacting the directory servers, the
adversary also knows all the Tor relays in the network. It can
then monitor all the Tor relays for timing information. The
adversary runs a probe client and server. It then constructs a
one-hop (one-node) circuit to each Tor relay. The probe client
uses that circuit to connect to the probe server. The probe keeps
each circuit alive and periodically performs a measurement of
the network latency of each circuit. Once the malicious server
receives a connection from Tor, it starts the circuit clogging
attack. The attack consists of a period of low traffic, followed
by a period of high traffic, followed by a period of low traffic,
and so on. During the period of high traffic, the three relays
in the circuit become overloaded as they have to process more
cells. This, in turn, leads to an increase in network latency
measured by the probe. As all other relays are unaffected,
the three relays, experiencing an increase in network latency,
are likely the three nodes in the circuit. Once the circuit is
identified, the attack can be further extended [12], [13] to
narrow down the list of possible clients which created that
circuit. The authors of [12], [13] measured the network latency
of the whole circuit to calculate the network latency between
the entry node and the server. From there, it was trivial to
calculate the network latency between the victim and the entry
node. The list of possible victims can then be narrowed down
using that extra information (network latency) obtained.

However, the investigation of this low-cost circuit clogging
attack was originally performed in 2005, when Tor consisted
of only 50 relays and few users. The primary use of Tor then,
was for remote connections, web traffic, and anonymous chats.
Experiments were performed using 13 out of the 50 relays.
Nowadays, Tor consists of thousands of relays, with hundreds



of thousands of users. Usage of Tor is also more diverse,
consisting of short and small web traffic and longer and more
bandwidth-intensive file downloads, such as BitTorrent [23].
It is widely believed that this attack is no longer possible due
to the changes in the Tor network mentioned above, such as
increased traffic and more diverse traffic. As far as we know,
there was no specific countermeasure implemented, other than
a better scheduling algorithm for circuits. Evans et al. [19]
presented a variant of the clogging attack using long paths. In
that paper, they replicated the Murdoch and Danezis attack and
showed that it was no longer applicable in the Tor network of
2008, due to the noise in the Tor network and the loss of the
effects of the attack in the noise.

We show that a variant of the circuit clogging attack from
the 2005 paper [17] is still possible today. This allows an
adversary to identify the three relays used in a circuit, and
can be a stepping stone to actually identify clients of the Tor
network. We note that in our proposed attack, only two out of
the three relays are public Tor relays; the third one is under
the adversary’s control. Our attack is more comprehensive
than previous attacks [17], [19] as the experiments include
all the Tor relays, and the periods of on/off attack are longer.
The attack is also performed on the real Tor network. The
experiment setup is also slightly different, as shown in the
next section.

III. ATTACK DESIGN

We now describe our circuit clogging attack. It is very
similar to the clogging attack from Murdoch and Danezis [17].
The four entities are the client (victim), burst server, probe,
and Tor. The client refers to any user connecting to servers
anonymously, using the Tor network. Tor represents the three
relays used in the circuit created by the client. The three Tor
relays are randomly selected from the real Tor network. The
burst server is a malicious server the client connects to, either
directly or indirectly. For example, the burst server can serve
advertisement content when the client visits a major popular
website. The goal of the burst server is to introduce enough
traffic in the connection with the client to identify the three
Tor relays used in the circuit. The probe entity is controlled by
the same adversary that controls the burst server; the objective
of the probe is to perform network measurements of all the
Tor relays. The probe measures the time to route a mes-
sage through each Tor relay in the network. For consistency,
the measurement is performed by creating a one-hop circuit
through each Tor relay and measuring the network latency.
The probe entity consists of three components, all hosted on
the same physical machine: a probe client, probe server, and a
public Tor exit node. Although the Tor exit node is a public exit
relay, its exit policies are restrictive to only allow exit traffic
to the probe server. Moreover, this exit node advertises low
bandwidth and is regularly turned off to prevent it from gaining
the “fast” and “stable” flags in the consensus document, which
in turn, decreases the probability that it will be used by other
circuits. Since actual one-hop circuits are not allowed in Tor,
this exit node is needed to simulate a one-hop circuit. Since
the exit node is hosted on the same physical machine as the
probe client and server, and is not used by other circuits, the
overhead introduced is small and consistent among all the
network probe measurements. The burst server machine and
the probe machine are time synchronized so that the increase in

Fig. 2. The layout of our proposed attack experiment. The burst server
could be a physical server or part of the content served by another
server, for example an advertisement server. The circuit created by
the client consists of real Tor relays. The probe’s three components
are hosted on the same physical machine. The probe exit node is set
up such that it only accepts exit connections to the probe server.

network latency measurements can be correlated with the time
of the burst traffic period. All the entities of our experiments
are shown in Figure 2.

The burst server introduces burst of traffic to the circuit,
in an attempt to disrupt the timing information measured
by the probe. The burst server alternates between a period
of burst traffic and a period of low traffic. Ideally, the Tor
network traffic is constant enough that introducing noise or
extra messages temporarily will increase the network latency of
the three Tor relays measured by the probe. If this experiment
is performed multiple times, the identity of the three Tor relays
used in the circuit can be identified, and the identity of the
client can be leaked [12], [13]. The burst server starts by
sending very few packets for a period TI , to obtain probe
measurements during the initial period. The burst server then
sends a burst of packets for a period of TA, then sends very few
packets for a period of time TS , and so on. During the burst
period, it is expected that the probe will measure an increase
in network latency for the three Tor relays used in the circuit,
but no increase in network latency in all other relays. We next
describe in more detail how the probe works.

The probe client creates a circuit with each of the relays
of the Tor network as the entry node, and chooses the probe
exit relay as the exit node. There is no middle node. Since the
exit node is controlled by the probe, essentially, a “one-hop”
circuit is created. Figure 3 illustrates how the probe works.
Once a circuit is created, at regular intervals, the probe client
sends a timestamp t1 to the probe server through the circuit.
The server records the time t2 that it received the timestamp.
Since the probe client and probe server are located on the same
physical machine, no time synchronization is required. Also,
since the probe exit node is not used for other circuits, the
latency through the exit node and the extra time for processing
is minimal. That small extra time is also consistent for all the
probe measurements and does not affect any of the timing
information. The network latency of each circuit (each relay
node p) is tp = t2 − t1.



Fig. 3. The probe works by creating “one-hop” circuit to each Tor
relay, with the exit node being the probe exit node. In this example,
the Tor network is shown to have only two relays.

The adversary needs to control the probe’s Tor exit node.
It is possible for the probe’s Tor exit node not to appear in
the public consensus document; an adversary could be more
stealthy that way. This requires setting up private directory
servers, which mirror the real Tor directory servers. This does
not affect the results of the experiments, just whether the
probe’s exit relay is public or not. Our modification to the
original circuit clogging attack [17] also requires that the Tor
exit node used in the circuit, shown in Figure 2, be controlled
by the adversary. We plan to relax that requirement in future
work. Although the Tor exit node advertises a low bandwidth to
the directory servers (10 KB/s), it is allowed to relay as much
traffic as the network bandwidth allows; this is to prevent our
two Tor exit nodes (probe and client circuit) to be used in other
circuits.

IV. PROPOSED DETECTION SCHEME

We propose a scheme that can be used by all clients using
Tor to detect when a circuit clogging attack is happening.
Recall that a circuit clogging attack, like the one described
in the previous section, can reduce the anonymity of all Tor
users. When a possible circuit clogging attack is detected, the
client can disconnect from the server and destroy the affected
circuit. This detection scheme can also be used by the Tor
operators, such as the directory servers, to monitor the Tor
network for circuit clogging attacks.

The idea behind the proposed scheme is to use a probe to
measure the network latency of each circuit. This is similar to
the adversary using a probe to build one-hop circuits to each
Tor relay. When the client creates a circuit, it also starts a client
probe through the same circuit. The client probe regularly
sends a timestamp ts1 through the circuit to the victim probe
server. The probe server replies with the same message ts1.
Once the client probe receives the reply from the probe server,
it calculates the current time ts2, and the RTT or network
latency for that circuit is ts = ts2 − ts1. Both the victim

Fig. 4. The layout of the proposed detection scheme for circuit
clogging attacks. The two new entities are the victim probe and the
victim probe server. The probe works similar to the attack probe,
except the whole circuit is monitored instead of individual relays.

client and the victim probe are hosted on the same physical
machine. Both the burst server and the victim probe server are
also hosted on the same server. Figure 4 depicts the setup for
the proposed detection scheme.

In our experiments, we set up both a victim probe and
a victim probe server. In a real attack, the victim probe
server is not needed. The network latency of the whole circuit
can be obtained through the lower layers. For example, the
TCP sequence numbers and corresponding timestamps can be
examined to determine the network latency for each circuit.
Also, a public trusted server, similar to the Tor directory
servers, can be hosted to reply to victim probes. As the next
section shows, the costs required to run such a server are not
very big. The challenges in setting up a public probe server is
outside the scope of this paper. All the clients need to run is
an extra process or thread for the victim probe, which sends a
probe at regular intervals through all the created circuits.

It can be argued that clients can also set-up one-hop circuit
for each of the relays used. However, since Tor, by default,
blocks one-hop exits, the client will have to also host a Tor
exit node, which might not be feasible nor practical.

V. EVALUATION

A. Experimental Setup

All our experiments were performed during February 2013
using Tor version 0.2.3.25. The client, burst server, and probe
were hosted on different machines, and were time synchro-
nized. In a real attack, only the burst server and the probe are
controlled by an adversary. Before each experiment, the latest
consensus document was downloaded from the Tor directory
servers. Only the Tor relays with the “fast” and “stable” flags
were chosen. The Tor node selection uses these criteria as well,
so our experiment is close to what would happen in a real
attack. Two Tor relays were randomly chosen to be the entry
and middle relay in the circuit used by the client to connect
to the burst server. The exit relay is hosted on our server; we
plan to relax this constraint later. Two other Tor relays were
also chosen, as a control case. In our experiments, we are only
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Fig. 5. Probe network measurement for a Tor relay used in the client
circuit. The burst attack period starts at the red (solid) vertical line
and stops at the green (dashed) vertical line. The pattern of burst/sleep
periods can be clearly seen.

probing four Tor relays, not the whole Tor network – an actual
attack would have to probe the whole Tor network. The entry
and middle relays are referred as TorC , while the two other
Tor relays are referred as TorR. The probe creates a “one”-
hop circuit to each of the four relays and sends a network
measurement every 5 seconds. The initial time period TI was
set to 15 minutes, while the burst attack period TA was set
to 5 minutes, and the sleep period TS was set to 5 minutes.
Each experiment was run for 60 minutes. Instead of creating
one single connection, the client is multi-threaded and sets up
5 threads to connect to the server. All the 5 threads use the
same circuit. In a real setting, a server can redirect a client
to 5 different content servers; many web browsers download
multiple parts of a server in parallel. For each experiment,
the four Tor relays are randomly selected from the list of Tor
nodes.

Figure 5 shows a probe’s network measurement of a Tor
relay used in the circuit. Each probe was sent at intervals of 5
seconds. It can be seen in the figure that during the burst period
(the beginning of which is indicated by the red darker solid
vertical line), the latency measured increases, and during the
sleep period (the beginning of which is indicated by the green
lighter dashed vertical line), the latency decreases to that of
the initial period. The initial period is used to set the baseline
for the average network latency for each relay.

The victim probe also is set to measure the latency of the
circuit every 5 seconds.

B. Results of Attack

Figure 6 shows an example of an experiment run. The
figure shows the probe’s network latency measurement for the
four Tor relays used in that experiment: two of them were
part of the circuit, and the other two were not part of the
circuit. Figure 6(a) and (b) refer to the entry and middle node
in the circuit, respectively, while Figure 6(c) and (d) refer to
the other two Tor relays. These two Tor relays ((c) and (d))
act as a control case, representing all the relays in the Tor
network. The probings of these two relays should show no

difference during the burst attack period and during the sleep
period. However, the entry and middle node should show a
distinct pattern, which is seen in Figure 6.

The probe machine is time-synchronized with the
burst server and knows when the different periods (ini-
tial/burst/sleep) happen. The initial time period TI is used as
a baseline. The baseline time tb is calculated as the average
of all the network latency times during the initial period TI .
The average time for each period is also calculated. For the
entry and middle relays’ measurements, it is expected that
the average time during the burst periods will be higher than
tb, and the average time during the sleep periods will be
about the same as tb. For the two other Tor relays TorR,
it is expected that the average time for all the periods will
be similar to the average initial time tb. Due to noise and
variations in probe measurements, such as a Tor relay being
used in a bandwidth-intensive circuit, the average time for the
sleep periods for TorC and for all periods for TorR might
be higher than the average initial time tb. If this happens,
this is called a false positive. These regular variations in the
network latencies measured lead to using a threshold value α to
determine whether the average time ta for a period indicates
a burst period or a sleep period. If ta ≥ α × tb, then this
indicates that the network latency measured is high enough
that it indicates a burst period. Relays experiencing such high
network latencies during actual burst periods are marked as
possible entry or middle relays used in the circuit. The value
of the threshold α is varied from 1.0− 5.0.

The varying threshold produces different numbers of false
positives (a random Tor relay accidentally marked as being part
of the circuit used to connect to the burst server) and different
numbers of correct predictions or numbers of true positives
(correct Tor relay identified as being either entry or middle
relay in the circuit used to connect to the burst server). The
Receiver Operator Characteristic (ROC) [26] curve shows the
trade-off between the false positive rate and the true positive
rate. Figure 7 illustrates the ROC curve for our experiments,
when varying the threshold α. The line y = x (green line in the
figure) shows the true positive rate and the false positive rate
when randomly determining whether a Tor relay is part of the
circuit or not (50% probability of being correct). The vertical
line from (0, 0) to (1, 1) shows a perfect classifier where all the
Tor relays part of the circuit are correctly identified and there
are no false positives. Figure 7 shows that our experiments
fall between the perfect classifier and random classifier. This
means that our attack is better than random but not perfect. The
area under the curve (AUC) shows the trade-off between the
true and false positive rate. The perfect classifier has an area
under the curve of 1.0 and the completely random classifier has
an AUC of 0.5. The area under the curve for our attack is 0.78.
The area under the curve when using one thread for the attack,
instead of five threads, is 0.68 (ROC curve not shown). This
means that using more threads is more effective at performing
the circuit clogging attacks than using just one thread. The
equal error rate indicates when the false positive rate is equal
to the true positive rate. The lower the equal error rate, the
more accurate is the system. Our attack achieved an equal
error rate of 28%, which means that our attack is accurate.

The results indicate that the circuit clogging attack is still
possible in the current Tor network. The probings of Tor relays
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Fig. 6. The probe’s network latency measurement over time for (a) the entry relay, (b) the middle relay, (c) and (d) the other two Tor relays
not part of the circuit.
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Fig. 7. The Receiver Operator Characteristic (ROC) curve for the
probe measurements. The area under the curve (AUC) is 0.78 and
the equal error rate is 28%. The y = x line indicates the random
classifier.

for measuring the network latency is effective at determining
when a burst attack period occurs and at identifying whether
a relay is used in the circuit by the client to connect to the

malicious burst server. We note that our attack is conservative:
more server threads, a higher burst of messages, and a longer
running time with more burst/sleep periods will make the
attack more accurate. However, since our experiments were
performed on the real Tor network, we did not want to affect
the load on the Tor relays unnecessarily.

C. Detection Scheme

The proposed detection scheme was run at the same time
as the attack. Each probe measurement is per circuit created by
the client. In a real setting, the client does not know when the
burst periods are, which is different for the attacker’s probe.
For experimental simplicity, the victim machine and the burst
server are also time-synchronized. This allows us to determine
the baseline and calculate the number of correct predictions
of circuit clogging attack happening. Figure 8 shows a time
versus network latency measured graph for the victim probe in
a circuit that is used to communicate with the busrt server. It
can be clearly seen in the figure that during the burst period, the
network latency measured increases and gradually goes back
to normal when the burst period ends. The increase in network
latency is also more pronounced than for the attack probes, as
seen in Figure 6; the y-axis scales are different. For the one-
hop attacker probe circuits, only one relay is affected, whereas
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Fig. 8. One experiment showing the client’s probe of a circuit used
for connecting to the burst server. The periods of burst/sleep can be
clearly seen in the figure.

for the client’s three-hop circuits, three relays are affected.

Similar to the attack probe measurement, an initial time
period TI is needed to set the baseline average time tc. The
baseline time can be obtained by the client probe connecting
to the client probe server some time before connecting to the
burst server, or through the average of all other circuit times,
or through a network-wide latency average in the consensus
document. When the measured circuit network latency exceeds
the baseline initial time tc, this circuit is marked as suspicious.
If the burst period was active at that time, then this counts as
a correct prediction. Our proposed detection scheme is able
to accurately detect 87.5% of all burst periods; that is, it can
predict when a circuit clogging attack is happening 87.5% of
the time.

The proposed detection scheme is thus accurate. Although
the scheme is not perfect, once a possible attack is detected,
all the connections streamed over that circuit can be reported
to the user, with a list of all the servers. After the detection
scheme is run for some time, the repeated servers on the re-
ported list are suspicious and can be further investigated. This
whole detection and reporting mechanism can be performed
transparently to the user. The challenges in authenticating
this list and preventing “bad-mouthing” of honest servers are
outside the scope of this paper. The proposed detection scheme
allows the client to destroy a suspicious circuit, to preserve
the user’s anonymity. The proposed detection mechanism has
some limitations, such as false positives and the overhead/cost
in creating a new circuit. The user has control when to destroy
a suspicious circuit. The user can disconnect as soon as the
circuit is flagged as suspicious, or it can wait until k “bursts”
are detected.

D. Costs

The total costs and overhead for performing the burst attack
(hosting the malicious content) and the probe machine are
small, as will be shown in this section.

The bandwidth used in our burst server during the burst
attack period is less than 30 KB/second, on average. If the
malicious content is hosted on Amazon EC2 [27], the cost

to run one server for one circuit is $11.38 per month. The
storage and processing needed to maintain the burst server are
minimal, and the costs for storage and processing are assumed
to be minimal.

The bandwidth required to probe one Tor relay is 130.4
bytes/second. Probings are performed every 5 seconds. If
a more fine-grained measurement is required, the interval
between measurement can be decreased, which will increase
the costs to run the probe machine. With 3, 000 relays, this is
3000 ∗ 130.40 = 391, 200 bytes/second, which is a bandwidth
of about 391 KB/second. The cost to run the probe on Amazon
EC2 is $121.91 per month. The processing needed for each
network latency measurement is minimal. The storage required
is to record all the network latency measurements, which
consist of timestamps. Each timestamp is only 13 bytes. For
a 60 minute experiment, this is 9.36KB for probing one relay,
or 28MB storage for all the relays.

The bandwidth required for a client to run the proposed
detection mechanism is 130.4 bytes/second, for each circuit the
client creates. With possibly 20 circuits created, this is an extra
bandwidth of 2, 608 bytes/second or 2.6 KB/second which is
minimal. The interval for each probe is 5 seconds; this interval
can be decreased for an increase in extra bandwidth needed
but faster detection. If the victim probe server is a public
server, the bandwidth required to reply to 5-minutes probe
from 500, 000 clients using 20 circuits is 21.7MB/second or
1.9TB/day, which is $5, 870 on Amazon EC2. In general, the
overall costs of running a victim probe, including processing,
storage, and network, are minimal. The benefit of running
a probe, however, is real, and allows a client to detect the
occurrence of a circuit clogging attack. This helps to preserve
the client’s anonymity.

VI. DISCUSSION AND CONCLUSION

We showed that a circuit clogging attack is still possible in
the current Tor network, contrary to previous claims. The goal
of a circuit clogging attack is to identify all the Tor relays used
in a circuit. A client uses the circuit to connect to a malicious
server (or malicious content hosted on a honest server). The
malicious server periodically switches between burst mode and
sleep mode. During burst modes, the server sends a burst of
messages, while during the sleep modes, the server sends a
few messages only. Since all the relays in the Tor network
are monitored through probe network latency measurements,
a spike in network latency is observed for the three Tor relays
used in the circuit during the burst periods. The costs to
perform a circuit clogging attack are also very low, making
it a practical attack. We showed that the Tor relays used in a
circuit can be accurately identified. Moreover, the false positive
rate is low as only some other Tor relays not used in the circuit
are accidentally identified as being part of the circuit.

A circuit clogging attack detection mechanism is also
proposed. The scheme uses a probe to monitor all the cir-
cuits created by the client, instead of each Tor relay. Once
an increase in network latency from a previously recorded
baseline time is measured, the server is flagged as suspicious.
The client can then disconnect from the server and destroy the
affected circuit. Through experiments on the real Tor network,
the proposed detection scheme has an accuracy of over 85%.
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Fig. 9. The Receiver Operator Characteristic (ROC) curve for the
probe measurements, where all the relays in the client circuit are
public Tor relays. The area under the curve (AUC) is 0.72. The y = x
line indicates the random classifier.

This paper showed that the anonymity of a person using
Tor is reduced since the Tor relays used can be identified. This
can be a stepping stone towards narrowing down the possible
users behind these relays. The detection scheme proposed
allows a user to detect possible occurrences of circuit clogging
attacks. With over 500, 000 users daily, the attack has huge
potential consequences. The proposed detection scheme can
help hundreds of thousands of people stay anonymous on the
Internet.

Although a detection mechanism is better than nothing,
a prevention algorithm would be best. We leave as future
work designing a scheduling algorithm that can prevent circuit
clogging attacks, such as [25]. The current experimental set-
up requires that the Tor exit node in the circuit be under the
control of the attacker. We performed 15 experiments where
all the nodes in the circuit are public Tor relays and with one
server thread. Figure 9 shows the ROC curve. The area under
the curve (AUC) was 0.72, which is close to an AUC of 0.78
when the exit relay belonged to the adversary. Based on this
promising preliminary result, we plan on extending our attack
such that the exit node used in the circuit is a regular Tor exit
node. We will explore ways to improve the accuracy of the
attack, such as using multiple server threads, varying the time
of the burst/sleep periods, and modifying the amount of data
sent during the burst periods.

The current attack identifies the Tor relays in the circuit;
future work will identify which of the relays are the entry,
middle, and exit relays. This would require more fine-grained
probe measurements. One of the anonymity improvements in
Tor is to use entry guards, a fixed set of three relays used as
entry relay in any circuit. We will also analyze whether using
entry guards leaks any information, as the user could be more
easily identified. If the same entry relay is found in circuits,
this can leak information about the user. The possible impact
of the attack on bridges and hidden servers is left as future
work.
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