
Why Kad Lookup Fails

Hun J. Kang, Eric Chan-Tin, Nicholas J. Hopper, Yongdae Kim
University of Minnesota - Twin Cities

{hkang,dchantin,hopper,kyd}@cs.umn.edu

Abstract

A Distributed Hash Table (DHT) is a structured over-
lay network service that provides a decentralized lookup for
mapping objects to locations. In this paper, we study the
lookup performance of locating nodes responsible for repli-
cated information in Kad – one of the largest DHT networks
existing currently. Throughout the measurement study, we
found that Kad lookups locate only 18% of nodes storing
replicated data. This failure leads to limited reliability and
an inefficient use of resources during lookups. Ironically,
we found that this poor performance is due to the high level
of routing table similarity, despite the relatively high churn
rate in the network. We propose solutions which either ex-
ploit the high routing table similarity or avoid the duplicate
returns using multiple target keys.

1 Introduction
A Distributed Hash Table (DHT) is a structured overlay

network protocol that provides a decentralized lookup ser-
vice mapping objects to peers. In a large peer-to-peer (P2P)
network, this service can also provide means of organiz-
ing and locating peers for use in higher-level applications.
This potential to be used as a fundamental building block for
large-scale distributed systems has led to an enormous body
of work on designing highly scalable DHTs. Despite this,
only a handful of DHTs have been deployed on the Internet-
scale: Kad, Azureus [1], and Mainline [5], all of which are
based on the Kademlia protocol [6]. These widely deployed
DHTs inherently face diverse user behaviors and dynamic
situations that can affect DHTs’ performance. Therefore,
there have been studies measuring various DHT’s aspects
including node distribution, user behaviors, and dynamics
of peer participation called churn [8, 10, 13]. Some stud-
ies [9, 12] also looked at the performance of lookups which
are fundamental functions of DHTs. However, most of the
previous work have focused on reducing lookup delay time.

In this paper, we study Kad lookup performance regard-
ing reliability and efficiency in the use of resources. In Kad,
object information is stored at multiple nodes (called replica
roots). Therefore, a peer can retrieve the information once
it finds at least one replica root. However, we observe that
8% of searching peers cannot find any replica roots imme-
diately after publishing, which means they are unable to

retrieve the information. Even worse, 25% of searching
peers fail to locate the information 10 hours after storing
the information. This poor performance is due to inconsis-
tency between storing and searching lookups; Kad lookups
for the same objects map to an inconsistent set of nodes.
From our measurement, only 18% of replica roots located
by storing and searching lookups are the same on average.
Moreover, this lookup inconsistency causes an inefficient
use of resources. We also find that 45% of replica roots are
never located and thus used by any searching peers for rare
objects. Furthermore, when many peers search for popular
information stored by many peers, 85% of replica roots are
never used and only a small number of the roots suffer the
burden of most requests. Therefore, we can see that Kad
lookups are not reliable and waste resources such as band-
width and storage for unused replica roots.

Why are the nodes located by publishing and searching
lookups inconsistent? Past studies [2, 12] on Kademlia-
based networks have claimed that lookup results are differ-
ent because routing tables are inconsistent due to dynamic
node participation (churn) and slow routing table conver-
gence. We question this claim and examine entries in rout-
ing tables of nodes around a certain key space. Surprisingly,
the routing table entries are much more similar among the
nodes than expected. Therefore, these nodes return a simi-
lar list of their neighbors to be contacted when they receive
requests for the key. However, the Kad lookup algorithm
does not consider this high level of similarity in routing ta-
ble entries. As a result, this duplicate contact list limits the
unique number of located replica roots around the key.

The consistent lookups enable reliable information
search although some copies of the information are not
available due to node churn or failure. Then they can also
provide the same level of reliability with the smaller number
of required replica roots compared to inconsistent lookups,
which means efficiently use resources such as bandwidth
and storage. Furthermore, consistent lookups locating mul-
tiple replica roots provide a way to load-balancing. There-
fore, we propose algorithms considering the routing table
similarity in Kad and show how improved lookup consis-
tency affects the performance. These solutions can improve
lookup consistency up to 90% (and 80%) and eventually
lead to guaranteeing reliable lookup results while providing
efficient resource use and load-balancing. Our solutions are
completely compatible with existing Kad clients, and thus
incrementally deployable.

1

2 Background
Kad is a Kademlia-based DHT for P2P file sharing. It is

widely deployed with more than 1.5 million simultaneous
users [8] and is connected to the popular eDonkey file shar-
ing network. The aMule and eMule clients are the two most
popular clients used to connect to the Kad network. We
examine the performance of Kad using aMule (at the time
of writing, we used aMule version 2.1.3), a popular cross-
platform open-source project. The other client, eMule, also
has a similar design and implementation.

Kad organizes participating peers into an overlay net-
work and forms a key space of 128-bit quantifiers among
peers. (We interchangeably use a peer and a node in this
paper.) It “virtually” places a peer onto a position in the key
space by assigning a node identifier (Kad ID) to the peer.
The distance between two positions in the key space is de-
fined as the value of a bitwise XOR on their corresponding
keys. In this sense, the more prefix bits are matched be-
tween two keys, the smaller the distance is. Based on this
definition, we say that a node is “close” (or “near”) to an-
other node or a key if the corresponding XOR distance is
small in the key space. Each node takes responsibility for
objects whose keys are near its Kad ID.

As a building block for the file sharing, Kad provides two
fundamental operations: PUT to store the binding in the form
of (key, value) and GET to retrieve value with key. These
operations can be used for storing and retrieving objects for
file information. For simplicity, we only consider keyword
objects in this paper because almost the same operations
are performed in the same way for other objects such as
file objects. Consider a file to be shared, its keyword, and
keyword objects (or bindings) where key is the hash of the
keyword and value is the meta data for the file at a node
responsible for the key. Peers who own the file publish the
object so that any user can search the file with the keyword
and retrieve the meta data. From the information in the meta
data, users interested in the file can download it. Because a
peer responsible for the object might not be available, Kad
uses the data replication approach; the binding is stored at r
nodes (referred to as replica roots and r is 10 in aMule). To
prevent binding information from being stored at arbitrary
locations, Kad has a “search tolerance” that limits the set of
potential replica roots for a target.

In both PUT and GET operations, a Kad lookup for a target
key (T) performs the process of locating nodes which are re-
sponsible for T (i.e., nodes near T). Kad lookup is mainly
composed to two phases (called Phase1 and Phase2 in con-
venience). In Phase1, a peer finds a route to T . A querying
node Q initially picks α nodes (contacts) which have the
longest matched prefix bit length to T from its routing ta-
ble and, “queries” those contacts by sending KADEMLIA REQ
messages for T (α is 3 in Kad). Each of queried nodes se-
lects β contacts closest to the target from its routing table,

and returns those contacts in a KADEMLIA RES message (β is
2 in GET and 4 in PUT). Once a queried node sends a KADEM-
LIA RES responding to a KADEMLIA REQ, it is referred to as
a “located” node. Q “learns” the returned contacts from
queried nodes and picks the α closest contacts from its
learned nodes. This lookup step of learning and querying is
performed by querying node Q, thus Kad lookup is called it-
erative. The querying node can approach to the node closest
to T by repeating lookup steps until it cannot find any nodes
closer to T than those it has already learned. The number of
lookup steps is bounded to O(log N) where N is the num-
ber of nodes in the Kad network. In Phase2, Q locates more
nodes near T by querying already learned nodes to publish
binding information to multiple nodes or to search the infor-
mation from those nodes. Publish requests (PUBLISH REQ)
and search requests (SEARCH REQ) are sent only in Phase2,
which is an efficient strategy because the replica roots exist
near the target and search nodes can locate the replica roots
with high probability. This process repeats until termination
conditions are reached – a specific amount of binding infor-
mation are obtained, a predetermined number of responses
are received, or a time-out occurs. More detailed descrip-
tion of Kad lookup and an illustration are provided in [4,9].

3 Evaluation of Kad Lookup Performance
In this section, we evaluate the performance of Kad fo-

cusing on the consistency between lookups through a mea-
surement study. We first describe the experimental setup
of our measurements. We then examine the inconsistency
problem between publishing and searching lookups and
show how this lookup inconsistency affects the Kad lookup
performance in reachability and efficiency in the use of re-
source.

3.1 Experimental Setup

We ran a Kad node using an aMule client on ma-
chines having static IP addresses without a firewall or a
NAT. Kad IDs of the peers were randomly selected so
that the IDs were uniformly distributed over the Kad key
space. A publishing peer shared a file in the following for-
mat “keywordU.extension” (e.g., “as3d1f0goa.zx2cv7bn”),
where keywordU is a 10-byte randomly-generated keyword,
and extension is a fixed string among all our file names, used
for identifying our published files. This allows us to publish
and search keyword objects of the files not duplicated with
existing ones. For each experiment, one node published a
file and 32 nodes searched for that file by using keywordU.
We ran nodes which had different Kad IDs and were boot-
strapped from different nodes in the Kad network to avoid
measuring the performance in a particular key space. We
repeated the experiments with more than 30,000 file names.

In order to empirically evaluate the lookup performance,
we define the following metrics.

2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

th
e

fr
ac

tio
n

of
 s

ea
rc

he
s

(C
D

F
)

search yield

found by each
found by all

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 0.18

 0 5 10 15 20

se
ar

ch
 y

ie
ld

time (hours)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 5 10 15 20

se
ar

ch
 s

uc
ce

ss
 r

at
io

time (hours)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 9 10

th
e

fr
ac

tio
n

of
 lo

ok
up

s

x-th closest replica root

(a) search yield immediately after PUT (b) search yield over time (c) search success ratio over time (d) search access ratio
Figure 1. Performance of lookup

Search yield measures the fraction of replica roots found
by a GET lookup process following a PUT operation, imply-
ing how “reliably” a node can search a desired file, and is
calculated as

number of the replica roots located by a GET lookup
number of published replica roots .

Search success ratio is the fraction of GET operations
which retrieve a value for a key from any replica roots
located by a search lookup (referred to as successful
searches), implying whether a node can find a desired object
or not, and is calculated as

number of successful searches
number of total searches .

Search access ratio measures the fraction of GET lookups
which finds a particular replica root, implying how likely
the replica root is to be found through lookups with a corre-
sponding key. It is calculated as (for each replica root)

number of searches which locate a replica root
number of total searches for the corresponding key .

For load balancing, the distribution of search access ratios
among replica roots should not be skewed.

3.2 Performance Results

We evaluate the lookup ability to locate replica roots by
measuring the search yield. Then, we show how search
yield affects the Kad lookup performance by examining the
search success ratio and search access ratio.

Figure 1(a) shows the distribution of the search yield im-
mediately after PUT operations (“found by each” line). The
average search yield is about 18%, meaning that only one
or two replica roots are found by a GET lookup (because the
replication factor is 10 in aMule). In addition, about 80%
of the total lookups locate fewer than 3 replica roots (25%
search yield). This result is quite disappointing, since this
means that one cannot find a published file 80% of the time
when these three nodes leave the network, even though 7
more replica roots exist. Figure 1(b) shows that the search
yield continuously decreases over time during a day from
18% to 9%, which means nodes are less likely to find a de-
sired file as time goes by.

This low search yield directly implies poor Kad lookup
performance. A search is successful unless the search
lookup is not able to find any replica roots (i.e., unless

the search yield is 0). This is because binding information
can be retrieved from any located replica root. Figure 1(c)
shows the search success ratio over time. Immediately after
publishing a file, the search success ratio is 92% implying
that 8% of the time we cannot find a published file. This re-
sult matches the statistics in Figure 1(a) that 8% of searches
have a 0 search yield. This result is somewhat surprising
since we expected that i) there exists at least 10 replica roots
near the target, and ii) DHT routing should guarantee to find
a published file. Even worse, the search success ratio con-
tinuously decreases over time during a day from 92% to
67% before re-publishing occurs. This degradation of the
search success ratio over time is caused by churn in the net-
work. In Kad, no other peers take over the file binding in-
formation stored in a node when the node leaves the Kad
network. The mechanism to mitigate this problem caused
by churning is that the publishing peer performs PUT every
24 hours for keyword objects.

Because GET lookups are able to find a small fraction of
replica roots, there must be unused replica roots as shown
in Figure 1(a). In “found by all” line, 55% of replica roots
are found by 32 lookups on average, so 45% of replica roots
are never located by any lookup. From this fact, we can con-
jecture that the replica roots found by each GET lookup are
not disjointed. This inference can be checked in Figure 1(d)
showing the search access ratio of each replica root. In this
figure, nodes in the X-axis are sorted by distance to a tar-
get and we can easily see that most of lookups locate the
two closest replica roots, but the other replica roots are not
contacted by lookups. This distribution of the search access
ratios indicates that the load of replica roots is highly unbal-
anced. Overall, the current Kad lookup process cannot effi-
ciently locate more than two replica roots. Thus, resources
such as storage and network bandwidth are uselessly wasted
for storing and retrieving replicated binding information.

4 Analysis of Poor Lookup Performance
In the previous section, we showed that the poor per-

formance of Kad lookups (18% search yield) is due to the
inconsistent lookup results. In this section, we analyze the
root causes of these lookup inconsistencies. Previous stud-
ies [2, 12] of Kademlia-based networks have blamed mem-
bership churn, an inherent part of every file-sharing appli-

3

cation, as the main contributing factor to these performance
issues. These studies claim that network churn leads to rout-
ing table inconsistencies as well as slow routing table con-
vergence. These factors then lead to non-uniform lookup
results [2, 12]. We question this claim and identify the un-
derlying reasons for the lookup inconsistency in Kad. First,
we analyze the entries within routing tables, specifically fo-
cusing on consistency and responsiveness. Next, we dissect
the poor performance of Kad lookups based upon charac-
teristics of routing table entries.

4.1 Characterizing Routing Table Entries
In this subsection, we empirically characterize routing

table entries in Kad. We first explain the distribution of
nodes in the key space, and then examine consistency and
responsiveness. By consistency we mean how similar the
routing tables of nodes around a target ID are, and by re-
sponsiveness we mean how well entries in the routing tables
respond when searching nodes query them.
Node Distribution. Kad is known to have 1.5 million con-
current nodes with IDs uniformly distributed [12]. Because
we know the key space is uniformly populated and we know
the general size of the network, we can derive nL, the ex-
pected number of nodes that exactly match L prefix bits
with the target key. Let N be the number of nodes in the
network and n′L be the expected number of nodes which
match at least L prefix bits with the target key. Then, the
expected match between any target and the closest node to
that target is 2log2 N bits. n′L increases exponentially as L
decreases (nodes are further from the target). Thus, n′L and
nL can be computed as follows:

n′L = 2log2 N−L nL = n′L − n′L+1 = 2log2 N−L−1

When N is 1.5 million, the expected number of nodes for
each matched prefix length is as follows:

L 21 20 19 18 17 16
nL 0.35 0.71 1.43 2.86 5.72 11.44
n′L 0.71 1.43 2.86 5.72 11.44 22.88

Routing Table Collection. To further study Kad, we col-
lected routing table entries of peers located around given
targets. We built a crawler that, given a target T , will crawl
the Kad network looking for all the nodes close to T . If
a node matches at least 16 bits with T , its routing table is
polled. The number 16 is chosen empirically since there
should be about 23 nodes at more than or equal to 16 bit
matched prefix length in Kad (more than twice the number
of replica roots). Those nodes are the ones “close” to T .

Polling routing tables can be performed by sending the
same node multiple KADEMLIA REQ messages for different
target IDs. Each node will then return the routing table en-
tries that are closest to these target IDs. A node’s whole
routing table can thus be obtained by sending many KADEM-
LIA REQ. For every node found or polled, a HELLO REQ is
sent to determine whether that node is alive. For this study,

we select more than 600 random target IDs and retrieve the
routing tables of approximately 10,000 distinct Kad peers.
We then examine the two properties mentioned above: con-
sistency and responsiveness.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

fr
ac

tio
n

(C
D

F
)

consistency

Closest 2
Closest 4

Closest 10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20

th
e

fr
ac

tio
n

of
 fr

es
h

en
tr

ie
s

matched prefix length

(a) Similarity among all nodes (b) Response ratio of nodes
Figure 2. Statistics on routing tables

View Similarity. We measure the similarity of routing ta-
bles. Let P be the set of peers close to the target ID T .
A node A is added to P if the matched prefix length of A
with T is at least 16 . We define a peer’s view v to T as
the set of k closest entries in the peer’s routing table. This
is because when queried, peers select the k closest entries
from their routing tables and return them. We selected 2, 4,
and 10 as k because 2 is the number of contacts returned in
SEARCH REQ, 4 for PUBLISH REQ and 10 for FIND NODE.

We measure the distance d (or the difference) between
views (vx, vy) of two peers x and y in P as

d(vx, vy) =
|vx − vy|+ |vy − vx|

|vx|+ |vy|
where |vx| is the number of entries in vx. d(vx, vy) is
1 when all entries are different and 0 when they are the
same. The similarity of views to the target is defined as
1 − dissimilarity where dissimilarity is the average dis-
tance among the views of peers in P . Then, the level of
this similarity indicates how similar close-to-T entries in
the routing tables of nodes around the target T are. For sim-
plicity, we call this the similarity of routing table entries.

Figure 2(a) shows that the average similarity of routing
table entries is 70% based on comparisons of all nodes in P .
This means that among any two routing tables of nodes in
P , close to T , 70% of entries are identical. Therefore, peers
return similar and duplicate entries when a searching node
queries them for T . The high similarity values indicate that
the closest node has a similar view to a target with the other
close nodes in P .
Responsiveness. In Figure 2(c), we examine the number of
responsive (live) contacts normalized by the total number of
contacts close to a given target key. The result shows that
around 80% of the entries in the routing tables respond to
our requests, up to a matched prefix length of 15. The frac-
tion of responsive contacts decreases as the matched prefix
length increases because in the current aMule/eMule imple-
mentations, peers do not check the liveness of other peers
close to its Kad ID as often as nodes further away [12].

4

 0

 1

 2

 3

 4

 5

 6

 7

 8

 8 10 12 14 16 18 20 22 24

th
e

nu
m

be
r

of
 n

od
es

matched prefix length

existing
duplicately-learned

uniquely-learned
located

(a) PUT

 0

 1

 2

 3

 4

 5

 6

 7

 8

 8 10 12 14 16 18 20 22 24

th
e

nu
m

be
r

of
 n

od
es

matched prefix length

existing
duplicately-learned

uniquely-learned
located

(b) GET

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

 8 10 12 14 16 18 20 22 24

th
e

nu
m

be
r

of
 n

od
es

matched prefix length

published
search-tried

search-found

(c) Distances of replica roots from a target
Figure 3. Number of nodes at each distance from a target

4.2 Analysis of Lookup Inconsistency
In the previous subsection, we observed that the routing

table entries of nodes are similar and only half of the nodes
near a specific ID are alive. From this observation, we in-
vestigate why Kad lookups are inconsistent and then present
analytical results.

Figure 4. Illustration of how a lookup can be inconsistent

We explain why Kad lookups are inconsistent using an
example, shown in Figure 4. A number (say k) in a circle
means that the node is the k − th closest node to the target
key T in the network. Only nodes located by the querying
nodes are shown. We first see how the high level of the
routing table similarity affects the ability of locating nodes
close to T . Peers close to T have similar close-to-T contacts
in their routing tables. Thus, the same contacts are returned
multiple times in KADEMLIA RES messages and the number
of learned nodes is small. In Figure 4(a), node Q learns only
the two closest nodes because all queried nodes return node
1 and node 2.

The failure to locate nodes close to a target causes incon-
sistency between lookups for PUT and GET. A publishing
node only finds a small fraction of the nodes close to the
target. In Figure 4(b), node P locates three closest nodes
(nodes 1, 2, and 3) as well as less useful nodes farther from
the target T . Node P then publishes to the r “closest” nodes
among these located nodes, assuming that those nodes are
the very closest to the target (r = 10 but only 6 nodes are
shown in the figure). Note that some replica roots (e.g.
node 37) are actually far from T and many closer nodes
exist. Similarly, searching nodes (Q1 and Q2) find only a
subset of the actual closest nodes. These querying nodes
then send SEARCH REQ to the located nodes (referred to as
“search-tried”). However, only a small fraction the search-

tried nodes are replica roots (referred to as “search-found”).
From this example, we can clearly see that the querying
nodes will obtain binding information only from the two
closest nodes (node 1 and node 2) out of 10 replica roots.

We next present analytical results supporting our rea-
soning for inconsistent Kad lookups. Figures 3(a) and
(b) show the average number of different types of nodes
at each matched prefix length for PUT and GET, respec-
tively. The “existing” line shows the number of nodes
found by our crawler at each prefix length and matches
with the expected numbers provided in the previous subsec-
tion. The “duplicately-learned” line shows the total num-
ber of nodes learned by a searching node including dupli-
cates and the “uniquely-learned” line represents the distinct
number of nodes found without duplicates. When a node
is included in 3 KADEMLIA RES messages, it is counted as
3 in the “duplicately-learned” line and 1 in the “uniquely-
learned” line. We can see that some nodes very close to
T are duplicately returned when a querying node sends
KADEMLIA REQ messages. In other words, the number of
“uniquely-learned” nodes is much smaller than the number
of “duplicately-learned” nodes when they are very close to
T . For instance, there is one existing node at 20 matched
prefix length (in “uniquely-learned” line), and it is returned
to a querying node 5 times in PUT and 3.8 times in GET
(“duplicately-learned” lines). To further compound the is-
sue, the number of “located” nodes is half that of “uniquely-
learned” nodes because, on average, 50% of the entries in
the routing tables are stale. In other words, half of the
learned contacts no longer exist in the network. As a re-
sult, a PUT lookup locates only 8.3 nodes and a GET lookup
finds only 4.5 nodes out of the 23 live nodes which have
more than 16 matched prefix length with the target. Thus,
we can see that the duplicate contact lists and stale (dead)
routing table entries cause a Kad lookup to locate only a
small number of the existing nodes close to the target.

Since the closest nodes are not located, PUT and GET
operations are inadvertently performed far from the target.
Figure 3(c) shows the average number of “published” (de-
noted as pL), “search-tried” (denoted as sL), and “search-
found” (denoted as fL) nodes for each matched prefix
length L. We clearly see that more than half of the nodes

5

which are “published” and “search-tried” match less than
17 bits with the target key. We can formulate the expected
number of replica roots E[fL] located by a GET lookup for
each L. Let N be the number of nodes in the network and
nL be the expected number of nodes which match L prefix
bits with the target key. Then fL is computed as follows:

E[fL] = sL ∗ pL

nL
= sL ∗ pL

2log2 N−L−1

The computed values of E[fL] match with fL from the ex-
periments shown in Figure 3. From the formula, E[fL] is
inversely proportional to L because nL increases exponen-
tially. Thus, although a GET lookup is able to find some
of the closest nodes to a target, not all of these nodes are
replica roots because a PUT operation publishes binding in-
formation to some nodes really far from the target as well
as nodes close to the target. For a GET lookup to find all
the replica roots, that is, all the nodes located by PUT, the
GET operation has to contact exactly the same nodes – this
is highly unlikely. This is the reason for the lookup incon-
sistency between PUT and GET operations.

5 Improvements
We already saw how the lookup inconsistency problem

affects the lookup performance in Section 3. This problem
limits the lookup reliability and wastes resources. In this
section, we describe several possible solutions to increase
lookup consistency. Then, we see how well the proposed
solutions improve Kad lookup performance. Moreover, we
evaluate the overhead of the new improvements.

5.1 Solutions

Tuning Kad parameters. Tuning parameters on Kad
lookups can be a trivial attempt to improve Kad lookup per-
formance. The number of replica roots (r = 10) can be
increased. Although this change could slightly improve per-
formance, it will still be ineffective because close nodes are
not located and the replica roots that are far from the target
will still exist. The timeout value (t = 3 seconds) for each
request can also be decreased. We do not believe this will
be useful either since this change results in more queries
being sent and more duplicates being received. The num-
ber of returned contacts in each KADEMLIA RES can also be
increased (β = 2 for GET and β = 4 for PUT). Suppose
that 20 contacts are returned in each KADEMLIA RES. Then,
20 nodes close to a target can be located (if all contacts are
alive) even though returned contacts are duplicated. How-
ever, this increases the size of messages by an order of 10
for GET (5 for PUT). Finally, the number of contacts queried
at each iteration (α = 3) can be increased. This would in-
crease the number of contacts queried at each iteration step,
thus, increasing the ability to find more replica roots. How-
ever, this approach will result in more messages sent and
even more duplicate contacts received.

Querying only the closest node (Fix1.) A solution of
querying only the closest node exploits the high similar-
ity in routing table entries. After finding the closest node
to a particular target, a peer asks for its 20 contacts clos-
est to the target. From our experimental results, a lookup
finds the closest node with 90% probability, and always
locates one of the nodes which matches at least 16 prefix
bits with the target. Therefore, the expected search yield is
0.9 × 1 + 0.1 × 0.7 = 0.97 (90% chance of finding the
closest node from Figure 1(d), 10% chance of not finding
the closest node, and 70% similarity among routing table
entries from Section 4). We note that this simple solution
comes as a direct result of our measurements and analysis.
Avoiding duplicates by changing target IDs (Fix2.)

Because of the routing table similarity, duplicate con-
tacts are returned from queried nodes and this eventually
limits the number of located nodes close to a target. To ad-
dress this problem, we propose Fix2 that can locate enough
nodes closest to a target.

Figure 5. Lookup algorithm for Fix2

Our new lookup algorithm is illustrated in Figure 5 in
which peer Q attempts to locate nodes surrounding target T .
Assume that nodes (A, B,..., F) close to target T have the
same entries around T in their routing tables and all entries
exist in the network. We define KADEMLIA REQ by adding
a target notation; KADEMLIA REQ (T) is a request to ask a
queried node to select β contacts closest to target T , and
return them in KADEMLIA RES. In the original Kad, Q re-
ceives duplicate contacts when it sends KADEMLIA REQ (T)
to multiple nodes. In a current Kad GET lookup (β = 2), the
only three contacts (A, B, and C) would be returned. How-
ever, Fix2 can learn more contacts by manipulating target
identifiers in KADEMLIA REQ. Once the closest node A is
located (i.e., Phase2 is initiated – see Section 2), Q sends
KADEMLIA REQ by replacing the target ID with other learned
node IDs ({B, C,..., F}). In other words, Q sends KADEM-
LIA REQ (T ′) instead of KADEMLIA REQ (T) where T ′ ∈ {B,
C,..., F}. Then, the queried nodes return contacts (neigh-
bors) closest to themselves. In this way, Q can locate most
of the nodes close to the “real” target T .

In order to effectively exploit Fix2, we separate the
lookup procedures for PUT and GET. These operations have
different requirements according to their individual pur-
poses; while GET requires a low delay in order to satisfy
users, PUT requires publishing the file information where
other peers can easily find it (it does not require a low de-
lay). However, Kad has identical lookup algorithms for both
PUT and GET, where a publishing peer starts PUT as soon as
Phase2 is initiated even when most of the close nodes are
not located. This causes the copies of bindings to be stored

6

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4

C
D

F

search yield

Original
Fix1
Fix2
r=20

t=1
α=6

β=20

(a) Lookup Improvement (Search Yield)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 40 60 80 100 120 140 160

C
D

F

Number of Messages

Original
Fix1
Fix2
r=20
α=6

(b) Lookup Overhead in PUT

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 30 40 50 60 70 80 90

C
D

F

Number of Messages

Original
Fix1
Fix2
r=20
α=6

(c) Lookup Overhead in GET

Figure 6. Lookup improvement
far from the target. Therefore, we modify only a PUT lookup
to delay sending PUBLISH REQ until enough nodes close to
the target are located while GET is performed without de-
lay. In our implementation, we wait one minute (the aver-
age time to send the last PUBLISH REQ is 50 seconds in our
experiments) before performing a PUT operation expecting
that most of the close nodes are located during that time.

5.2 Performance Comparisons
We next compare the performance improvement of the

proposed algorithms. With the results obtained from the
same experiments explained in Section 3, we show that our
solutions significantly improve lookup performance.

Search yield can be used to clearly explain the lookup
consistency problem. Figure 6(a) shows the search yield
for each solution. Simply tuning parameters (number of
replica roots, timeout value, α, β) exhibit search yields of
35% ∼ 42%. Fix1 has an improvement of 90%, on av-
erage, which is slightly less than expected because some
replica roots leave the network or do not respond to the GET
requests. Fix2 improves the search yield to 80%, on aver-
age, but provides more reliable and consistent results. For a
search yield of 0.4, 99% of Fix2 lookups have higher search
yields compared to 95% of Fix1 lookups. Since Fix1 relies
only on the closest node, the lookup results may be different
when the closest node is different (due to churn). This can
be observed when a new node closer to the target churns in
because it could have different routing table entries from the
other nodes close to it.

We next look at the overhead in the number of mes-
sages sent for both PUT and GET operations. The number
of messages sent by each algorithm for PUT is shown in
Figure 6(b). Fix1 and Fix2 use 72% and 85% fewer mes-
sages respectively because the current Kad lookup contacts
more nodes than the proposed algorithms. After reaching
the node closest to a target, the current Kad lookup locates
only a small fraction of “close” nodes in Phase2 (the num-
ber of nodes found within the search tolerance is fewer than
10). Thus, the querying node repeats Phase1 again and con-
tacts nodes further from the target until it can find more than
10 nodes within the search tolerance. The overhead for pa-
rameter tunings is higher than the original Kad implemen-
tation, as expected. Increasing the number of replica roots

implies that 20 replica roots need to be found. Since it is
already difficult (having to restart Phase1) to find 10 replica
roots, it is even more difficult to find 20 replica roots – thus,
the number of messages sent in PUT is much higher than
for Original. Contacting more nodes at each iteration (in-
creasing α from 3 to 6) increases the number of messages
sent, and shortening the timeout (from 3 to 1) incurs a sim-
ilar overhead. However, we observe that the overhead is
not as high as increasing the number of replica roots be-
cause when r is increased, Phase1 is restarted a couple of
times – the Kad lookup process has difficulties locating 10
replica roots, thus trying to locate 20 replica roots means
that Phase1 has to take place more times.

The message overhead for GET operations is shown in
Figure 6(c). Fix1 and Fix2 sent 1.45 ∼ 1.5 times more mes-
sages than the current Kad lookup. In the current Kad im-
plementation, only a few contacts out of the learned nodes
are queried during Phase2 – thus, few KADEMLIA REQ and
SEARCH REQ are sent. Even if the original Kad lookup im-
plementation is altered to send more requests, this would
not increase the search yield due to the number of messages
wasted in contacting far away nodes from the target because
of duplicate answers. Increasing the number of replica roots
to 20 uses roughly the same number of messages as Origi-
nal for GET because increasing the number of replica roots
does not affect the search lookup process. Increasing the
number of returned contacts (α), however, does increase
the number of messages sent in GET because 6 nodes are
queried instead of 3 nodes (a shorter timeout has a simi-
lar overhead). The overhead due to this tweaking is even
higher than Fix1 or Fix2 because our algorithms increase α
only after finding the closest node.

Fix1 and Fix2 produce much higher performance than
solutions changing parameters. Moreover, the overhead of
these two solutions are lower than Original for PUT and
slightly higher for GET. The overhead for the other solutions
are much higher. We next compare only these two algo-
rithms, Fix1 and Fix2, as they are the most promising ones.
Figure 7(a) shows that the search yield of the algorithms
decreases as time goes on because of churns. However, it
is still higher than the original Kad lookup. Although they
show a very similar performance level, the variation of per-

7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 5 10 15 20 25

se
ar

ch
 y

ie
ld

time (hour)

Original
Fix1
Fix2

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 5 10 15 20

se
ar

ch
 s

uc
es

s
ra

tio
time (hour)

Original
Fix1
Fix2

(a) Search Yield (b) Search Success Ratio
Figure 7. Lookup performance over time

formance in Fix1 is slightly higher than Fix2 due to the pos-
sibility of a closer node churning in. Due to the high search
yield, both Fix1 and Fix2 enable a peer to successfully find
a desired object at any time with a higher probability than
the original Kad lookup. In Figure 7(b), the search success
ratios for our proposed algorithms are almost 1 after pub-
lishing while the ratio for the original Kad is 0.92. Even
after 20 hours, the ratios for the solutions are 0.96 while the
ratio for the original Kad is 0.68.

Overall, Fix1 and Fix2 significantly improve the perfor-
mance of the Kad lookup process with little overhead in
terms of extra messages sent compared to the other possi-
ble algorithms and the original one. Fix1 is simple and can
be used in an environment with a high routing table consis-
tency. The downside of Fix1 is that it is not as reliable as
Fix2 in some cases. Suppose that a new node joins – and be-
comes the closest node, but its routing table entries close to
the target are not replica roots which were routing table en-
tries of the “old” closest node. Then, a GET operation might
not be able to find these replica roots. However, a querying
client can locate most of the closest nodes around a target in
Fix2 even though the “old” closest node leaves the network
or a joining node becomes the closest node. Therefore, Fix2
can be used for applications which require strong reliability
and robustness.

6 Object Popularity and Load Balancing

Many peers publish or search popular objects (or key-
words such as “love”) and some nodes responsible for the
objects receive a large number of requests. To examine
severity of this load balancing issue, we perform experi-
ments on the lookup for popular objects in Kad network.
The experiments are composed of two steps: i) finding the
most of replica roots of popular objects in the network us-
ing our crawler and ii) examining the number of the replica
roots located by Kad lookups. We select objects whose
name match with keywords extracted from the 100 most
popular items in Pirate Bay [14] on April 5, 2009. We mod-
ify our crawler used for collecting routing table entries so
that it could send SEARCH REQ. We consider a node to be a
replica root if it returns binding information matching with

a particular target keyword. Then, we run 420 clients to
search bindings for the objects using those keywords.

We evaluate Kad lookup performance by investigating
the number of replica roots located by Kad searches. First,
we examine if a client was able to retrieve bindings. In the
experiments, each client could find at least one replica root
and retrieve binding information – the search success ratio
was 1. Next, we discuss if Kad lookups use resources effi-
ciently. Figure 8(a) shows the average number of the replica
roots located by all clients at each prefix matched length.
The “existing” line represents the actual replica roots ob-
served by our crawler. The “distinctly-found” line indicates
the number of the unique replica roots, but the “duplicately-
found” line includes duplicates. For example, when one
replica root is located by 10 clients, it is counted as 1 in
the “distinctly-found” line but as 10 in the “duplicately-
found” line. Overall, our results indicate that 85% of all
replica roots were not located during search lookups, and,
therefore, never provide the bindings to the clients. Our
crawler found a total of 598 replica roots for each keyword
on average. However, our clients located only 93 replica
roots during the searches, which was only 15% of the to-
tal replica roots. Furthermore, we could observe a load-
balancing problem in Kad lookups. Most of the “unlocated”
replica roots are far from the target (low matched prefix
length). At 11 matched prefix length, only 10 out of 121
replica roots were located. On the other hand, nodes close
to the target were always located but received requests from
many clients. At more than or equal to 20 matched pre-
fix length (“20+” in the figure), there were only 1.4 unique
replica roots (in the both “existing” and “‘distinctly-found”
lines) implying that all those replica roots were located by
clients. However, there were 201 “duplicate-found” roots,
which means that one replica root received search requests
from 141 clients, on average.

To better illustrate the load-balancing problem, we de-
fine the average lookup overhead of replica roots at L prefix
matched length as:

LoadL =
number of duplicately-found replica roots

number of existing replica roots
A high LoadL value means that there are numerous

nodes at matched prefix length L which received search re-
quests. The “real” line in Figure 8(d) shows the load for the
above experiments. The load was high for the high matched
prefix length (replica roots close to the target) while the load
was close to 0 for nodes far from the target (low matched
prefix length). This result indicates that i) Kad is not us-
ing replica roots efficiently, and ii) the nodes closest to the
target suffer the burden for most of the search requests.

This problem can be explained by two factors in Kad.
First, a querying node sends SEARCH REQ starting from the
closest node to nodes far from the target, thus, the closest
node would receive most of the requests. Secondly, due to

8

 0

 50

 100

 150

 200

8 10 12 14 16 18 20+

nu
m

be
r

of
 r

ep
lic

a
ro

ot
s

matched prefix length

existing
distinctly-found

duplicately-found

 0

 50

 100

 150

 200

8 10 12 14 16 18 20+

nu
m

be
r

of
 r

ep
lic

a
ro

ot
s

matched prefix length

existing
distinctly-found

duplicately-found

 0

 50

 100

 150

 200

8 10 12 14 16 18 20+

nu
m

be
r

of
 r

ep
lic

a
ro

ot
s

matched prefix length

existing
distinctly-found

duplicately-found

0

50

100

150

8 10 12 14 16 18 20+

nu
m

be
r

of
 r

ep
lic

a
ro

ot
s

matched prefix length

real
orginal

new

(a) (b) (c) (d)
Figure 8. (a) Lookup with real popular objects (b) Original Kad lookup for our objects (c) New Kad lookup for our objects (d)
Load for each prefix bit for real popular objects and our objects

the termination condition in Kad, the search stops if 300 re-
sults (objects) are received (recall that a replica root can re-
turn more than one result). Although there are more replica
roots storing the binding information for a certain object,
the search process stops without contacting these replica
roots because 300 objects have been returned by the few
replica roots contacted.

To address this load-balancing problem, we propose a
new solution which satisfies the following requirements: i)
balance the load for search lookups, and ii) produce a high
search yield for both rare and popular objects. A description
of the solution is as follows. A querying node attempts to
retrieve the binding information starting far from the target
ID. Suppose that querying node Q sends a KADEMLIA REQ
to node A, which is within the search-tolerance for target
T . In addition to returning a list of peers (containing nodes
closest to T that A knows about), A sends a piggybacked
bit informing Q whether it has binding information for T ,
that is, whether A is a replica root for T . If A sends such
a bit, Q then sends a SEARCH REQ with a list of keywords
to A and the latter returns any binding of objects matching
all the keywords. When many replica roots publish popular
objects, Q has a chance to retrieve enough bindings from
replica roots that are not close to T . Thus, Q does not have
to contact replica roots close to the target. This lookup can
reduce the load on the closest nodes to a target with only a
1-bit communication overhead.

To exploit the new lookup solution, it is important to de-
cide where to publish objects, that is, which nodes will be
replica roots. Some nodes very close to a target ID should
clearly be replica roots. This guarantees a high search yield
even if only a small number of nodes publish the same ob-
jects (“rare” objects) because the closest nodes are almost
always found as we have previously shown. Moreover, it
is desirable that nodes far from the target be replica roots
so that they can provide binding information earlier in the
lookup process. This lessens the burden on the load for
the closest replica roots and provides a shorter GET delay to
querying nodes. In the new PUT operation, a publishing peer
locates most of the closest nodes using Fix2 and obtains a
node index by sorting these nodes based on their distance to
a target ID. The publishing node then sends the i-th closest

node a PUBLISH REQ with probability p = 1
i−4 .This heuris-

tic guarantees that objects are published to the five closest
nodes and to nodes further from the target.

We implemented our proposed solution and ran experi-
ments to determine if it met our requirements for both PUT
and GET. The same experiments from Section 3 were per-
formed with the new solution. We repeated the experiments
changing the number of files to be published, but we only
present experiment results similar to those of the real net-
work when the original Kad lookups were used. We ob-
served a search success ratio of 62% for rare objects and al-
most 100% for popular objects. We next looked at whether
our algorithm mitigated the load-balancing problem or not.
In the experiment, 500 nodes published about 2150 differ-
ent files with the same keyword, and another 500 nodes
searched those files with that keyword. The experiments
were repeated with 50 different keywords.

To show that our experiments emulated real popular ob-
jects in Kad, we tested both the original Kad lookup al-
gorithm and our solution for comparison. In Figure 8(d),
the “original” line show the results obtained from using the
original Kad algorithm. As expected, these results were
similar to what we obtained from the real network. The
number of replica roots located by our proposed Kad lookup
solution is shown in Figure 8(c). More replica roots were
found (both the “duplicately-found” and “distinctly-found”
lines) farther from a target than for the original Kad lookup.
At 11 matched prefix length, 48 out of 101 replica roots
were located using our solution while only 10 out of 91
replica roots were located using the original algorithm. The
“new” line in Figure 8(d) shows that the load was shared
more evenly across all the replica roots for our solution. At
more than or equal to 20 matched prefix bit, the load de-
creased by 22%. In summary, our experimental results show
that the proposed solution guarantees a high search yield for
both rare and popular objects, and can further mitigate the
load balancing problem in lookups for popular objects.

7 Related Work
Kad is a DHT based on the Kademlia protocol [6] that

uses a different lookup strategy than other DHTs such as
Chord [11] and Pastry [7]. The main difference between

9

Chord and Kademlia is that Chord has a root for every key
(node ID). When a querying node finds that root, it can lo-
cate most of the replica roots. Every node keeps track of
its next closest node (successor). In Pastry [7], each node
has an ID and the node with the ID numerically closest to
the key is in charge. Since each node also keeps track of its
neighbors, once the closest node is found, the other replica
roots can also be found. Thus, Chord and Pastry do not
suffer from the same problems as Kad. We note that just
replacing the Kad algorithm with Chord or Pastry is not
a suitable solution as Kad contains some intrinsic proper-
ties, inherited from Kademlia, that neither Chord nor Pastry
possesses – for example, Kad IDs are symmetric whereas
Chord IDs are not. The Pastry algorithm can return nodes
far from the target due to the switch in distance metrics.
Moreover, Kad is widely used by over 1.5 million concur-
rent users whereas it was never shown that Chord or Pastry
can work on large-scale networks.

Since Kad is one of the largest deployed P2P networks,
several studies have measured various properties and fea-
tures of the Kad network. Steiner et al [8, 10] crawled
the whole Kad network, estimated the network size, and
showed the distribution of node IDs over the Kad key space.
More recently in [9], the authors analyzed the Kad lookup
latency and proposed changing the configuration parame-
ters (timeout, α, β) to improve the latency. Our work dif-
fers in that we measured the lookup performance in terms
of reliability and load-balancing, and identified some fun-
damental causes of the poor performance.

Stutzbach et al. [12] and Falkner et al. [2] studied net-
works based on the Kademlia DHT algorithm by using
eMule and Azureus clients, respectively. They argued that
the lookup inconsistency problem is caused by churn and
slow routing table convergence. However, our detailed
analysis on lookups clearly shows that the lookup incon-
sistency problem is caused by the lookup algorithm which
cannot consider duplicate returns from nodes with consis-
tent views in the routing tables. Furthermore, the authors
proposed changing the number of replica roots as a so-
lution. Our experiments indicate that just increasing the
replication factor is not an efficient solution. We pro-
pose two incrementally-deployable algorithms which sig-
nificantly improve the lookup performance, and a solution
to mitigate the load-balancing problem. Thus, prior work
on the lookup inconsistency is incomplete and limited.

Freedman et al. [3] considered the problems in DHTs
(Kad included) due to non-transitivity in the Internet. How-
ever, non-transitivity will only impact the lookup perfor-
mance in a small way since, in essence, it can be considered
a form of churn in the network. We already accounted for
churn in our analysis and showed that churn is only a minor
factor in the poor Kad lookup performance.

8 Conclusion
Should node churn be blamed as the root cause of poor

lookup performance for file sharing? In this paper we exam-
ined why the Kad network exhibits poor performance dur-
ing search and publish operations. The poor performance
comes from the fact that the Kad network works too well
in some sense. As we have shown, the level of similarity
among nodes’ routing tables in the Kad network is much
higher than expected. Because of this high level of consis-
tency, many of the same duplicated peers are returned dur-
ing lookups. Thus, during a search, the number of unique
nodes found close to a target ID is very limited. We have
also observed that Kad suffers from a load-balancing prob-
lem during lookups for popular objects. Our proposed algo-
rithms significantly improve Kad lookup performance while
simultaneously balancing lookup load. Our solutions are
completely compatible with existing Kad clients and thus
incrementally deployable.

Acknowledgments. This work was funded by the NSF un-
der grant CNS-0716025. We thank Peng Wang and James
Tyra for the discussion on the performance of Kad in the
early phase of the paper.

References

[1] Azureus. http://azureus.sourceforge.net.
[2] J. Falkner, M. Piatek, J. John, A. Krishnamurthy, and T. An-

derson. Profiling a Million User DHT. In IMC, 2007.
[3] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and I. Sto-

ica. Non-Transitive Connectivity and DHTs. In USENIX
WORLDS, 2005.

[4] H. J. Kang, E. Chan-Tin, N. Hopper, and Y. Kim. Why Kad
Lookup Fails. Technical Report 09-019, University of Min-
nesota, 2009.

[5] Mainline. http://www.bittorrent.com.
[6] P. Maymounkov and D. Mazı́eres. Kademlia: A Peer-to-Peer

Information System Based on the XOR Metric. In IPTPS,
2001.

[7] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Middleware, 2001.

[8] M. Steiner, E. W. Biersack, and T. En-Najjary. Actively
Monitoring Peers in KAD. In IPTPS, 2007.

[9] M. Steiner, D. Carra, and E. W. Biersack. Faster Content
Access in KAD. In IPTPS, 2008.

[10] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global
View of Kad. In IMC, New York, NY, USA, 2007. ACM.

[11] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Peer-to-Peer Lookup Service for Internet
Applications. In SIGCOMM, 2001.

[12] D. Stutzbach and R. Rejaie. Improving Lookup Performance
Over a Widely-Deployed DHT. In INFOCOM, 2006.

[13] D. Stutzbach and R. Rejaie. Understanding Churn in Peer-
to-Peer Networks. In IMC, 2006.

[14] The Pirate Bay. http://thepiratebay.org.

10

