Attacking the Kad Network

Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune,

Nicholas Hopper,

Yongdae Kim

University of Minnesota - Twin Cities
200 Union Street SE
Minneapolis, MN 55455
{pwang, tyra, dchantin, mal chow, f oo, hopper, kyd} @s. um. edu

ABSTRACT

The Kad network, an implementation of the Kademlia DHT pro-
tocol, supports the popular eDonkey peer-to-peer file sbanet-
work and has over 1 million concurrent nodes. We describeraév
attacks that exploit critical design weaknesses in Kad ltwaan
attacker with modest resources to cause a significantdraofiall
searches to fail. We measure the cost and effectivenesesé th
attacks against a set of 16,000 nodes connected to the iopafat
Kad network. We also measure the cost of previously proposed
generic DHT attacks against the Kad network and find that bur a
tacks are much more cost effective. Finally, we introductearal-
uate simple mechanisms to significantly increase the costese
attacks.

Categories and Subject Descriptors
C.2.0 [Computer Networks]: General—Security and protection

General Terms
Security

Keywords
P2P, Security, Attack, Kad

1. INTRODUCTION

The Kad network is a peer-to-peer distributed hash tableT)DH
based on Kademlia [20]. It supports the growing user pofmriat
of the eDonkey [10] file sharing network by providing efficient
distributed keyword indexing. The Kad DHTs very popular, sup-
porting several million concurrent users [31, 27], and adangest
deployed DHT, its dynamics has been the subject of sevarahte
studies [32, 30, 29, 28].

leDonkey is a server-based network where clients perform file
searches. Kad is a decentralized P2P network. aMule/eMale a
the two most popular clients which can connect to both thereDo
key and the Kad network.

2There are several Kademlia-based networks such as the Uszure
BitTorrent DHT, but we will refer to the aMule/eMule DHT as &a

Permission to make digital or hard copies of all or part o twork for
personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SecureComm 2008, September 22 — 25, 2008, Istanbul, Turkey
Copyright(©)2008 ACM ISBN # 978-1-60558-241-2 ...$5.00.

DHT Security in general — the problem of ensuring efficierd an
correct peer discovery despite adversarial interferenisean im-
portant problem which has been addressed in a number of jirks
26, 4,17, 12, 23, 15, 24, 13]. However, the majority of theseks
assume a DHT with ring topology and recursive routing; Kaliem
uses a fundamentally different, “multi-path” iterativeuting algo-
rithm as well as a different topology. To our knowledge, necsfic,
applicable analysis of the security properties of the KdadeBHT
or the deployed Kad network has appeared in the literatesgite
the potential impact of an attack on this network.

In this paper, we describe an attack on the Kad network that
would allow a few malicious nodes with only modest bandwidth
to effectively deny service to nearly all of the Kad netwa@ur at-
tack has two phases — the first phase is to “collect routinig -
tries”, which we calthe preparation phase, and the second phase is
to attack queries on the Kad network, which we ¢l execution
phase. Having collected routing table entriésit is not obvious
how to use them to halt Kad lookups: since Kademlia is specifi-
cally designed to tolerate faulty routing-table entrieshyploying
parallel lookup, the simple attacks discussed in the liteea(such
as dropping or misrouting queries [26, 4]) will not impede tha-
jority of lookups: an attacker who owns 50% of all routingleab
entries would halt at most 34% of all Kad queries using thesk-t
niques.

We describe a new attack on the general Kademlia search algo-
rithm that successfully prevents an intercepted query fromplet-
ing, and show how to exploit design weaknesses in Kad toduarth
reduce the cost of the attack. We experimentally evaluaédviio
phases of our attack by connecting roughly 16,000 victimesod
to the live Kad network and attacking them directly. Extriagiog
from these results, we estimate that an attacker using kesirogk-
station with a 100 Mbps link can collect 40% of the routingléab
entries in the Kad network in less than one hour, and prevett 7
of all Kad keyword lookups.

A secondary contribution of this paper is an experimenta-me
surement of the cost of two generic DHT attacks against thi Ka
network. We find that the Sybil attack [9], which works by cre-
ating enough long-lived identities that the attacker owisggaifi-
cant fraction of routing table entries, is significantly maxpen-
sive than our hijacking attack, both in terms of bandwidth &n
terms of wall-clock time. We also evaluate the cost of indei p
soning [16] against Kad to ensure that 75% of all search teau
incorrect (notice that this is a weaker goal than ensuriag 5%
of lookups fail). We find that the bandwidth cost of this altés
higher than the cost of our attack on Kademlia lookups.

Our attack is different from the Sybil attack because we do no
introduce any new identities in the DHT. It is also differérdm
the Eclipse attack [25] because we actively acquire entetser
than passively promoting compromised nodes.

3obtaining the routing table of other nodes in the network

Finally, we present several potential mitigation mechasigor
increasing the cost of our attack on Kad lookup while keepivey

design choices made by the designers of the Kad protocol. We

evaluate these mechanisms in terms of their effectivenagsra
cremental deployability. We find that a very lightweightig@n
can effectively eliminate hijacking and greatly incredse tost of
lookup attacks, while having minimal impact on the curresens
of Kad.

New versions of the two most popular Kad clients have regentl

been released — aMule 2.2.1 on June 11, 2008 and eMule 0.49a
on May 11, 2008. We show that although they have new features

intended to improve security, our attacks still work witke ttame
resource requirements.
Contributions: The contributions of this paper are as follows:

Level Q

0 Level 1

(a) Kademlia

(b) Kad

Figure 1. Routing Table Structures of Kademlia and Kad. Leaves

e We are the first to show that a large-scale attack on a widely- gepjct x-buckets

deployed P2P network can easily be performed, with experime
tal measurements.

e Our attack is much more efficient and effective than previous

known attacks — the costs to perform our preparation phase is

less than the costs of launching a Sybil attack and the costs f
our execution phase is less than the costs of launching &x ind
poisoning attack — comparison is made in Section 6. Morgover
our execution phase can disrupt control plane operatioitd¢bu
ing and maintaining routing tables) instead of just attagkhe
data plane and thus, is stronger than an index poisoningkatta

e An attacker with moderately low resources can easily ceipipd
Kad network and we hope that this paper will help developers
and users to fix the vulnerabilities in the eMule/aMule Kad.

The remainder of this paper is organized as follows. Se&igines

an overview of the design and vulnerabilities of Kad. Setto

gives further details of our primary attack on Kad, and Sect

gives analytical and experimental results on the costtfieness

of this attack. Section 5 reports on a related attack witteldvand-

width costs in the second phase. Section 6 compares ouk &abtac

general DHT attacks, while Section 7 discusses mitigaticates

Search tI(_)Ierance

Qr———— T key

0O Q=D Q=) Qs 7 s O
L___J L__ b4V ___ %
Step 1 StepJZj Step 3 J

Keyword - <+ Matches

Figure 2: Kad keyword search

consults these contacts in parallel, which each retwftheir con-
tacts. Next(Q picks thea closest contacts from this set, repeating
this procedure until it cannot find nodes closet tihan itsk closest
contacts, which become the replica roots.

Kad. Kad uses random 128-bit IDs. Unlike some other DHT
networks, in which nodes must generate their IDs by applging
cryptographic hash function to their IP and/or public kegdikdoes
not have any restriction on nodes’ IDs. Unlike Kademlia, kzel
replica roots of a data itedx, v) are nodes with an 1D such that
rdxz < § whered is asearch tolerance hard-coded in the software;

gies for Kad. Section 8 outlines the recent changes in the Kad s different data items may have different numbers of reptots.

clients and how they affect our attacks. Finally, Sectioms@usses
related work on Kad and DHT security, and Section 10 presants
conclusions and directions for future work.

2. BACKGROUND

In this section, we first present some background on the Khaem
algorithm and Kad's design. We then highlight the primargige
flaw in Kad that enables our attack. We finally discuss ourcktta
model.

2.1 Overview of Kademlia and Kad

Kademlia. In Kademlia, every node has a unique ID uniformly
distributed in the ID space. The distance between two nadtt®i
bitwise XOR of the two node IDs, the “XOR metric”. Every data
item (i.e., a [key, value] binding) stored by the Kademliaweark
has a key. Keys are also uniformly distributed in the samepizs
as node IDs. Each data item is stored by seveslica roots —
nodes with IDs close to the key according to the XOR metric.

To route query messages, every node maintains a routing tabl
with O(log(V)) entries, calledk-buckets, where N is the size of
the network. Figure 1 (a) shows a Kademlia routing tablek-A
bucket on levet contains the contact information of up kmodes
that share at least ambit prefix with the node ID of the owner.
Kademlia biases routing tables toward long-lived conthgtplac-
ing a node in &-bucket only if the bucket is not full or an existing
contact is offline.

Kademlia nodes use these routing tables to route query gessa
in O(log(V)) steps. When nodé& queries keyz, it consults its
routing table and finda: contacts from the bucket closestto @

The routing table structure of Kad, shown in Figure 1(b)iighgly
different from Kademlia. Starting from level &;buckets with an
index € [0, 4] can be split if a new contact is inserted in a fkl
bucket, whereas in Kademlia, only tkebuckets with index) can
be split. Kad implementations ugebuckets of sizé& = 10. The
wide routing tables of Kad result in short routing paths.t&iach
and Rejaie [31] show that the average routing path length7s
assuming perfect routing tables, given the size of the nuifed
network.

SupposeA and B are Kad nodes, wherB is in a k-bucket at
level i of A’s routing table. Then we say thd is anith level
contact of A, and thatA has anith level back-pointer to B. In Kad,
any node can be a contact of another node. Due to the symmetry
of the XOR metric, if bothA and B are in the other’s routing table
then they are most likely at the same level. Also, from theingu
table owner’s point of view, &-bucket on theith level covers a
% fraction of the ID space. For example, the #-buckets on the

4'" level coveril of the ID space. Hence, on averadg, of the
owner’s queries will use contacts in thésbuckets as the first hop.

A Kad node learns about new nodes either by asking nodes it al-
ready knows while searching, or by receiving messages fraas
New nodes are inserted into its routing table if the corradpa
k-bucket is not full or can be split. A node tests the livendsisso
contacts opportunistically while searching, or (if neeggsperiod-
ically with HELLO_REQ messages to check if they are stilvali
The testing period for a contact is typically 2 hours.

A Kad nodeQ@ looking for a particular keyword first computes
the MD4 hash of that keyword as the key and starts a keyword
search following steps shown in Figure 2. Starting from ast+

ing table, at each ste) picks its three contacts closest to the key

expensive computations and the total amount of state inettveank

and sends them a KADEMLIA_REQ message; these contacts sends under 20GB.

KADEMLIA_RES messages with additional contacts, and ttwe pr
cess repeats until a replica root is located. While this yjpeo-
cedure is similar to that of Kademlia, the major differensehe
termination condition. After finding a live replica roaf sends

a SEARCH_REQ message including the keyword to the replica
root, which returns many “matches” to the keywo€g stops send-

ing both KADEMLIA_REQ (for finding more replica roots) and
SEARCH_REQ (for finding more matches) messages when it re-
ceives more than 300 matches, even if all of the matches are re
turned by a single replica root.

If all three nodes thaf) contacts in a given step are offline or
simply slow,Q attempts to recover the search as follows. For eac
keyword query,Q maintains a long list of backup contacts, con-
sisting of 50 contacts fror)’s routing table plus unused contacts
returned by intermediate hops. Until a query terminat@swill
wake up once every second and check whether the query has re
ceived any new replies in the last three seconds; if not,cki
the closest backup node, removes it from the list, and serals i
KADEMLIA_REQ message. After 25 second3,prepares to stop
and will not send more requests to intermediate hops. Fonpla
if all nodes in the list are offline, the@ sends 22%5 — 3 = 22)
messages to backup contacts, before it eventually times out

h

2.2 Design Vulnerabilities in Kad

Our attacks are all primarily enabled by Kad’'s weak notion of
node identity and authentication. Since, as in most fileisbaret-
works, there is no admission control, nor any cost of crgaéin
identity, the Sybil attack is straightforward to implemeaithough
we will show that by itself this is a somewhat ineffectiveaalt. Of
more concern is that, while IDs are persistent, there is nifialele
binding between a host and its ID. The design decision to@tipp
persistent IDs allows a user to significantly reduce hetwgpaime
— recall that a node’s routing table depends on its ID. Thd-wal
clock time to construct a reasonably complete routing tetbeell
above the median Kad session time of 7 minutes reported in [32
and keeping a persistent ID and routing table for each nodesia
possible to avoid this penalty. This design also avoids dimamon
from NAT traversal. Furthermore, it seems that the desgyokose
to avoid tying a node’s ID to its IP address to support nodeilitygb
e.g. users who move from wired to wireless connections of con
nect via a modem pool with (consequently) varying IP add®ss
A further optimization with this approach is that a node thaés
offline at one (IP, port) location and comes online at anotzer
essentially “repair” the routing table entries it affectsdoing so.
Unfortunately, the decision to create no verifiable bindietween
a node and its ID make it possible for anyone to exploit thpaie
operation and collect more routing table entries. In essehe ID
of a node serves as its authentication as well; since nodel®s
public information, this predictably leads to several ittt

2.3 Attack Model

Our attack is designed under the assumption that the attaoke
trols only end-systems and does not require corruption srout-

ing of IP-layer packets between honest nodes. We describe ou
attack under the assumption that the attacker’s goal is goade

the service of the Kad network, by causing a significant foact

of all keyword searches to fail. However, the same techrsicqpaa

be applied with little modification to cause failure of a sfgrant
fraction of searches either for a specific set of keywordsitiated

by a specific set of nodes.

We also assume an attacker’s primary cost is in bandwidih, an
the attacker has enough computational and storage resdange-
cess messages and store states. This is a realistic assusiptie,
as shown in Section 3, processing Kad messages does notdnvol

3. ATTACKING THE KAD NETWORK

Since we assume an attacker does not corrupt IP communmicatio
between honest nodes, to effectively attack keyword gsi¢hie at-
tacker must first cause honest nodes to send keyword queritss t
malicious nodes. Then it must make these queries fail. Tdurs,
ceptually, our attack has @reparation phase, where the attacker
poisons as many routing table entries as it can manage, a@d an
ecution phase, where the attacker causes queries routed through its
malicious nodes to fail. In practice, however, the execupbase
can begin in parallel with the preparation phase.

3.1 Preparation Phase

Crawling. Suppose an attacker contrelshosts with index, : €

[0, n—1]. For simplicity, we assume each host has an equal amount
of bandwidth. The attacker creates a table with tuplgsP;, port;).
This table is distributed to the hosts. Then a malicious node is
started on each computer. Each node generates af; |12 %

so that then IDs partition the ID space inta pieces. Next they
join the Kad network and find their neighbors in the ID space.
Starting from its neighbors, eadW; discovers nodes with IDs in
the range[M;, M;1), by picking a previously discovered node,
and “polling” its routing table by making appropriate KADEM
LIA_REQ queries. This process continues urtl; either fails

to discover additional nodes or finds its available banduwiglt-
hausted.

Back-pointer hijacking. In addition to polling the nodes that it
discovers, aftef\/; learns the routing table of nod4, it also hi-
jacks a certain fraction of the pointers iA’s routing table as fol-
lows. Supposel has honest nodB in its routing table. By sending

a HELLO_REQ message td claiming to be froml Dg, M; can
hijack this back-pointer. This hijacking is attributabtethree fac-
tors. First, Kad does not have ID authentication and alloades

to pick their own IDs. Second, Kad node IDs are not specific to
a node’s network location; a node that changes its IP adevitiss
retain its ID and update its address with HELLO_REQ messages
Third, when receiving such a HELLO_REQ, does not verify
whetherB is still running at the current IP address and port.

After creating a false contact by hijacking a back-poinieis
possible that the false contact could later be correctedrigyaf
three methods'

1. If AisalsoinB’s routing table, and sends a KADEMLIA_REQ
or HELLO_REQtoA, A will update the pointer. To prevent this,

M; will also hijack B’s pointer toA.

. If node C' is one of A’s contacts, and ha® as a contact(”
could includeB in a KADEMLIA_RES message. This can be
prevented by hijacking’s pointer toB as well.

. If nodeC is not one ofA’s contacts, but ha® as a contact,
there is a small probability that whe?i is discovered as an in-
termediate hop, it return® in a KADEMLIA_RES message.
This scenario is unlikely, sincd already has a pointer tB’s
ID, and the intermediate hops of a keyword search increase th
prefix match length unless a timeout occurs.

In our attack,M; attempts to prevent cases (1) and (2) above. Our

experiments produced no instances of case (3).

3.2 Execution Phase

The execution phase of our attack exploits weaknesses irs Kad
routing algorithm to cause queries to fail when a malicioodenis
used as a contact. In other DHTs, malicious nodes can failepie

“In eMule, only the first scenario will result in correction thfe
back-pointer.

by query dropping, misrouting queries, and/orreplica root imper-
sonation. The Kademlia parallel routing algorithm is designed to
resist dropping, and in particular it would be counterpiiihe for

an attacker to fail to respond to a KADEMLIA_REQ, becauss thi
would cause the querier to drop the malicious node from i$-ro
ing table. We note, however, that Kad inherits a generic wes&
from Kademlia: at each intermediate step, thesest contacts are
used to discover the next hops, so that an attacker who knows o
can impersonate arbitrary nodes in the ID space can “hijdok”
query by returning at least nodes that are closer to the key than
those returned by other intermediate hops. The details wftbho
fail a query after this point depend on the termination ctiods of
the DHT. We tested two methods of failing a Kad query using thi
idea.

Fake Matches. This attack exploits the fact that a keyword query
terminates when the queri€) receives more than 300 keyword

This attack is simple, works with high probability againstya
keyword, and has a very low bandwidth overhead - it takes one
KADEMLIA_RES to attack one keyword query. After compress-
ing, the message contains about 128 bytes of data. Thus -our at
tacker simply attacks every keyword query it sees in thismaan

4. ATTACK EVALUATION

To evaluate the effectiveness and bandwidth cost of ouclatta
we launched the attack on a large number of simulated victides
connected to the Kad network. The victim nodes use a modified
aMule client to save resources. We also validated the ateadk
nigues at a smaller scale using the latest eMule release &inte
of writing (0.48a).

4.1 Validation of Attack Techniques
We validate the effectiveness of our attack techniquesnagai

matches in response to SEARCH_REQ messages. Thus, when gpyle with the following experiment. We used one victim nagle

malicious node receives a SEARCH_REQ for a keyword, it can
send a list of 300 bogus matches in response. Since the sesfisin
is long enough, the querier will stop sending KADEMLIA_REQ

— running version 0.48a of the eMule client — and one maliou
node M. In one run of the experimeng) joins the Kad network
and populates its routing table. After an hour, we start thkéaious

or SEARCH_REQ messages even though it hasn't reached a livepqge, which tries to hijack fractiop of Qs routing table® Fig-

honest replica root yet, causing the query to fail.

We found that this attack works with aMule and early versions
of eMule clients’. However, eMule clients version 0.47a and later
will not halt unless the matches all correspond to the selody-
word the user used to generate the query. Thus, to defeatitiis,
the attacker must be able to “reverse” the hashed key andHand t
corresponding keyword. For many popular searches, thisoean
done in advance by dictionary search; however, we did netrgit
to measure the dictionary size necessary to ensure a highalgto
ity of success with this approach.

In either case, this attack depends on malicious nodesvrecei

ure 3 (a) shows the experiment result wheiie set to10%, 20%,
and30%. The measured percentage is computed as%, where
h is the number of contacts hijacked By andc is the number
of contacts polled byl/. The measured percentage is larger than
the planned percentage because the hijack code was codfigure
hijack a routing table with 860 contacts. At the time of hijmg),
however,@ has only about 750 contacts and some of the contacts
are stale, so they are neither returned®yor used in keyword
queries.

To test the effectiveness of our attack on keyword queries, w
measured the percentage of failed keyword queries givéerelift

ing SEARCH_REQ requests before honest replica roots can re- horcentages of contacts hijacked. WitHraction of contacts hi-

spond to a search. Our attack achieves this goal as folloash E
KADEMLIA_REQ for a keyword query carries the key. Nodé
is areplica root for key if IDn @ K < § whered is thesearch
tolerance. Thus for each KADEMLIA REQ received, a malicious

node can generate a contact whose ID is a replica root. The IP

and port fields are set to point to the malicious nddg, where

i = K mod n. Upon receiving this reply, the querier will send
a KADEMLIA_REQ to the malicious colluded; to find more
replica roots and to confirm that it is alive. The colludd re-
ceives the KADEMLIA REQ and finds = K mod n, i.e., it

is responsible for sending false matches to the keyword.célén
replies to show it is alive without introducing other colerd. Re-
ceiving this reply, the querier sends a SEARCH_REQ message t
M;, who proceeds as described above.

“Stale” contacts. A more efficient attack that works with all clients
we tested exploits Kad'’s timeout conditions. Recall thatlithree

of the closest nodes at a given step timeout, a Kad clientfindl

its closest backup contact, and try to contact that node ptticess
repeats every second until more live contacts are found @e25
onds have elapsed. Thus, whihreceives a KADEMLIA_REQ,

it generates a KADEMLIA_RES with 30 contacts. For tlle con-
tact, the ID is set agey — ¢, and the IP and port can be set to

anything not running a Kad node. For example, they can be set

to an unroutable address or a machine targeted for a DDo&atta
Receiving the reply from\/, with high probability@ inserts the
contacts at the beginning of its list of possible contadiseithese
contacts are very close to the key. Three of them will be toie@
immediately. Since they don't reply, after three secod@isill try
one more every second. Finally, after another 22 secapdsill
stop trying more contacts. The attack may faiifiinds an honest
replica root before it receives the reply frab.

5At the time of writing, we used aMule 2.1.3 and eMule 0.48a

jacked, with probability at leagt— f3, at least one hijacked contact
should be used in a query. In the experiment, we input a lis0of
keywords’ to @ and count the number of failed queries. Figure 3
(b) shows that the result is close to our expectation.

4.2 Bandwidth Usage

In our attack, bandwidth is used for three tasks: hijackiagkb
pointers, maintaining hijacked back-pointers, and attagkey-
word queries. Assuming the worst case for the attackeryewate

is stable and its routing table is fully populated. The Katwoek
has approximately one million nodes, so a fully populateat-ro
ing table has 8&-buckets — 11k-buckets on the 4th level and 5
k-buckets for each of thing(1,000,000) — 5 ~ 15 additional
levels.

Hijacking Back-Pointers. Suppose an attacker wants to stop frac-
tion g of the queries of a victim, then it should hijapk= /1 — ¢

of the victim’s routing table. The attacker can send one KABE
LIA_REQ message to poll &-bucket, so it takes 86 KADEM-
LIA_REQ messages to poll a routing table. Then the attackeds
one HELLO_REQ message per hijacked back-pointer. So istake
86 x 10 x p = 860 x p HELLO_REQ messages to hijapkraction

of backpointers in a routing tabl&. Therefore, in the preparation

5To simplify the discussionp fraction of contacts in each @'s
k-buckets are hijacked.

"The list includes popular movies, songs, singers, softsydiie-
name extensions, etc.

8To simplify the discussion, we assume the attacker hijahks t
same percent of contacts in evésbucket of a victim. To opti-
mize the attack, an attacker should prefer to hijack highllback-
pointers, since high level contacts are used more often énieg!
As a special example, on averagg,: 68.75% of a node’s queries

use the top (4th) level contacts. In this case, the numberesf m
sages (of all four types) and bandwidth costs are less.

39.8 8 g0l
o 401 § [Expected
g o [Measured
GCC)) 30! 29 B 60F i
2 L
3 20r © 40+
[0
5 15 S
7 IS
8 E 20t
= 10 8
@
o
0
1 20, . 0 15 29 39.8
PIannedOPercentage of Hijacked 8ontacts Percentaae of Hiiacked Contacts
(a) Hijacking back-pointers (b) Attacking keyword queries

Figure 3: Attack Technique Validation

phase, the number of messages and the bandwidth cost th attac estimate that, to attack all keyword queries of the whole Ked
fraction of queries sent by Kad nodes are: work, the download bandwidth required is 7.09 megabyteseer
ond (MBps), and upload bandwidth required is about 14.4 MBps

Number of messages 86 x n + 860 x ¥/1 —g xn Q)
Bytesin=86 x n x 322+ 860 x {/1 —g xn x 55 (2 4.3 Large Scale Experiment
Bytes out= 86 x n x 63 + 860 x /T —g x n x 55 3) In this experiment, we use about 500 PlanetLab [5] machimes t
run a large number of Kad nodes as victims, and a server in our
Maintaining Hijacked Back-Pointers. Kad nodes ping their con- lab to run the attackers. The victim nodes for this experimam a
tacts periodically. To maintain hijacked back-pointersaligious slightly modified aMule client: as with eMule and aMule, the-v

nodes must reply to these HELLO_REQ messages. The period oftim client has two layers — the DHT layer provides lookup &=y
pinging a contact increases and will be fixed at two hourséf th (for keyword search, for example) to the application layerjch
contact is in the routing table for more than two hours. Fointea handles functions like file publishing and retrieval. The Dldyer
nance, every hour, a node also sends a KADEMLIA_REQ messagewas largely unmodified. It follows the same protocols for mai
to fix a k-bucket, but only if thek-bucket has eight or more empty taining routing tables and parallel iterative routing asuédvand
slots. We ignore the cost of handling these KADEMLIA_REQ aMule, and uses the same system parameters, e.g, timeairterv
messages since they are less frequent. It is very unlikely @h tween HELLO_REQ messages. In the application layer, the-mod
high levelk-bucket has eight or more empty slots, especially when ified client issues random keyword queries periodically. s@we
an attacker hijacks high level back-pointers. Hence thebmurof bandwidth and storage of the PlanetLab nodes, howeveres dot
messages and the bandwidth cost are: support PUBLISH_REQ and SEARCH_REQ messages from other
Kad nodes. In other words, the victims provided routing eerto

Number of messages per secea 60 x 3" - gxn (4) the Kad netWOrk, but not blnd|ng services.

2 % 3600 During the experiment, about 25,000 victim nodes bootgtdp
. 860 x /T —gxn x55 from 2000 different normal Kad nodes. If it fails to bootgtya
Bytes in {out) per second 2 % 3600 ®) victim node exits without issuing any keyword queries. I ou

experiments,11, 303 — 16, 105 nodes bootstrapped successfully.

Attacking Keyword Queries. The uplink cost to attack one key- after a successful bootstrap, each node sends a messageab th
word query is a single 128-byte KADEMLIA_RES message, while cyer registering as a victim. In the next two hours, théirvis

the downlink cost is a single 63-byte KADEMLIA_REQ message. jiq their routing tables and help other normal Kad nodeseo
Suppose the users of the Kad network isaueyword queries per K ADEMLIA_REQ messages. After that, each victim sends 200
second, on average. The total bandwidth cost of attackifigc- queries, one every 9 seconds, and exits five minutes aftelirgen
tion of keyword queries i& x g KADEMLIA_RES messages per o |ast query. The attacker starts at the same time as thmsic
second. Hence we estimate that the number of messages and thg jistens for registration messages, and starts to hijaekrouting
bandwidth cost to attack fraction of queries sent by Kad nodes tables of victims after 1.5 hours, then attacks every kegvaurery.
are: The attack run for one hour (half hour for hijacking, half héor
Number of messages per secoads x g x 1 (6) a_Lttacking querie_s). To avoid attacking normal Kad nodes vtb-
. tims do not provide the attacker as a contact to normal Kaésod

Bytes in per seconek w x g x n x 63 @ Figure 4 (a) shows the comparison between expected and mea-
Bytes out per secong w x g x n x 128 (8) sured keyword query failures, where we say a query failséf th
victim does not find any normal Kad nodes within the searaériol
ance of the target ID. In th&0%, 20%, and30% cases, the mea-
sured frequency is higher than the expected number. Hoyneer
difference between the measured numbers and expected rmimbe
decreases as the percentage of hijacked contacts incrdages
40% case, the measured frequency is slightly lower than the ex-
pected figure.

Figure 4 (b) and (c) show the attacker’'s message and bartdwidt
%Although the average number of query messages was measure¢©Sts. The attack cost was slightly less than expected. T fin
during a short period, we believe this is Sufficient to shoevatder the reason, the messages collected are categorized iet® ¢ht-
of magnitude of the bandwidth required for our attack. egories: (i) hijacking, (ii) maintenance, and (iii) rowiattack, as

To estimatew, we joined 216 nodes with random IDs to the
Kad network, each through a different bootstrapping nodésced
throughout the Kad network. Every node counted the number of
keyword-search KADEMLIA_REQ messages it received in each
one-hour period and the average was computed. This expgrime
ran for 24 hours. The one-hour period with the highest averag
number of queries resulted in 405 queries per hbstence we

90 T T T 800 70
[l Expected @ Expected Send
CJmeasured

@ Expected Send
= Measured Send
[Expected Received |
[Measured Received

[Measured Send
[Expected Received
[Measured Received

@
S
~
o
=

=)
=]

~
r=}
@
=3
S
o
S

@

=
33
=}
=}

a

=]
b
S

I
S

w

S

Percentage of Failed Queries
N w
o o
N w
o o
o o
= nN
o o

=
Q
=}

5
Bandwidth Usage (KB) per Victim

Number of Messages per Victim
B
o
o

o

\
o
o

10 40

1 20 30 40 10 20 30 40
Percentage of Hijacked Contacts Percentage of Hijacked Contacts

(a) Query Fail Rate (b) Number of Messages (c) Bandwidth

20 30
Percentage of Hijacked Contacts

Figure 4: Large Scale Attack Simulation: 11, 303 ~ 16, 105 victims and 50 attackers. In (b) and (c) the numbers of messas and bandwidth costs
are normalized based on the number of victims in each experient.

w
&
S
@
g
3
®
<
3

@ Hijacking @ Hijacking @ Hijacking @ Hijacking
3 Maintenance
[Routing

[Maintenance

[Maintenance
7007 3 Routing

3 Maintenance
[Routing

3001 (] Routing

@
&
3

N
&
s

&

8

3

e
»
5]
S

Number of Messages per Victim
= P
5 8
8 8

Number of Messages per Victim
Number of Mesiages per Victim
Number of Messages per Victim

o

MS ER

(a) 10% (b) 20% () 30% (d) 40%

Figure 5: Number of Messages in Detail: ES, MS, ER, MR stand for expectesent, measured sent, expected received, and measured fieed
respectively. The numbers of messages are normalized based the number of victims in each experiment.

shown in Figure 5. The number of messages used for hijackirsgy (any check on an IP address and port to determine whethertst is i
close to the expectation. The difference is mainly due tosagss own, a hijacked node will continue to send messages to iself

lost at the victim side: one lost KADEMLIA_RES results in seal reply to itself, so that most of the routing table remainsitked
fewer HELLO_REQ messages. The attackers received many fewe indefinitely.

maintenance messages (ii) than the expectation. This isodiie Although the attack will render the network nearly inopéeadt
short period of the attacks: most victims finished beforentaén- the time it is perpetrated, we expect that the Kad networklgvou
ing their hijacked contacts. In a longer term attack, the Inemnof slowly recover over time, for a number of reasons. Firstelveill
messages for maintaining hijacked back-pointers shouldidse be some nodes offline at the time of the attack, who are in tlie ro

to the expectation. The attackers receive more routing agess ing tables of online nodes. When these nodes rejoin the mketwo
(keyword queries) (iii) than expected. We analyzed the fgbe and send HELLO_REQ messages to their contacts, their gtatin
attackers and found that a large number of keyword queries ar ble entries will be restored. Second, there will be a few acistin
received more than once. A victim sends multiple copies afyga kK a node’s routing table that cannot be hijacked: each nodsitikes
word query to an attacker if several hijacked contacts aeel urs contacts into one of five types, 0-4. Nodes with type 0-2 (Whic
the query. The fact that some keyword queries are receivdd mu we will call in aggregate “Type 2”) have successfully resped
tiple times and others are not received (hence cannot bekattp to multiple KADEMLIA_REQ or HELLO_REQ messages; those
suggests that the hijacking algorithm can be improved. Caete with type 3 are “new contacts” that have not yet replied toquiest;

improve is to first analyze the polled routing table, thersirely and nodes with type 4 have failed to reply to a recent reqifésen
hijack contacts according to the distance between the centéhe responding to the requests of others, a Kad node will onlg sen
number of routing messages sent is close to the expectattaube “Type 2" contact. Thus we can only hijack the “Type 2" contact
repeated queries received in a short period are dropped. but a few type 3 or 4 contacts may later reply to the node and be

promoted. Thus it may be necessary to repeat the processlperi
5. REFLECTION ATTACK cally to limit the network’s recovery.

We deployed and tested a small scale evaluation of this tfpe o
attack and found it to be highly successful. The experimers set
up with 48 victim nodes deployed across 3 machines, eachmvict
node bootstrapping from a different node in the real Kad netw
Once bootstrapping is complete and after waiting for 5 na@aut
each victim will send a HELLO_REQ to the attacker node. After
waiting 2 hours (to allow the victim nodes to stabilize theiating
tables) the attacker starts the hijacking attack. It will gee rout-
101t can be argued that a simple check can be performed by everying table of each victim and hijack all received contacts.traok
node so that their entries are not themselves, but this isaf pf the rate of recovery, the victim nodes print their routiniglés ev-
concept and UDP spoofing can easily be performed by the attack ery 10 minutes. Since the victim nodes are connected to #ie re

g;hgar‘ve two nodes! and B's routing table entries point to €ach Kad network, and we did not hijack backpointers to the vistim

The major disadvantage of the the proposed attack is thasit h
an ongoing cost of around 100 Mbps. However, a slight twist on
this attack involves hijacking a nodesstire routing table so that
the entries in the routing table point to the victim itselfiver than
to the attacker - we call this the reflection atta€k This greatly
reduces the ongoing cost of the attack, while leaving theémrian-
able to contact any other Kad nodes. Since a node does notmerf

~
=}
S

———————————— little subsequent bandwidth usage.

. 6. COMPARISON TO OTHER ATTACKS

In this section, we discuss and evaluate several altematiscks
on Kad that rely on similar weaknesses, and present tecasigu
mitigate these attacks.

=3
S
S

o
S
S

~

I
S
1S)

N Type <=2
. Type=3

300 '; N\ Type =4 6.1 Sybll AttaCk

oo Because P2P file sharing systems lack any form of admission
control, they are always vulnerable to some form of Sybrakt
A Sybil attack on a P2P routing protocol is used to collectkbac
 ER T OO PN pointers, which are used to attract query messages. Therefo
OOV\GO"TZO T80 270 300 380 450 480 540 600 the effectiveness of a Sybil attack can be computed from ¢e s
Time (minutes) of back-pointers collected by the Sybil nodes. In a measeném
))] study, we joined 28 Sybil nodes to the Kad network. TheselSybi
Figure 6: Average hijacked and total contacts over time nodes were modified to record information about their bazikiers,
while maintaining their routing tables and responding tol&M-
100 LIA_REQ messages normally. We identified back-pointers to a
Sybil nodeS as follows. Normal nodes find out if their contacts
are alive or not by sending HELLO_REQ or KADEMLIA_REQ
80 messages before their expiration time. Since the long@stagion
70 time of a contact is two hours; keeps a list of the nodes that have
60 sent it a KADEMLIA_REQ or HELLO_REQ message in the past
two hours. At the same time, periodically, sends a KADEM-
50 LIA_REQ message to every node on this list with its nodelD
(S) as the target key. If B's KADEMLIA_RES includeS, then it
knows that it is onB’s routing table.
3 In Figure 8 (a), we see that, on average, a Sybil node collects
20 ~ , about 500 back-pointers after 24 hours, and about 1400 paickers
10 after one week (168 hours). The fraction of queries a Syhileno
0 60 120 180 240 300 360 420 480 540 600 receives from a back-pointer depend on the common prefixteng
Time (minutes) (CPL) between the Sybil node’s ID and the back-pointer’s ID, be-
cause theCPL determines the Sybil node’s contact level on the
back-pointer’s routing table.
. . . Figure 8 (b) shows that, the number of back-pointers \@ifh
it should be the case that our experiment overestimatesathenf >= 15 quickly becomes stable at approximately 50. After 40
recovery. . .~ hours, the number of back-pointers wi@PL € [10,14] is sta-
Figure 6 shows the average number of contacts in the routing o ot approximately 200. Assuming node IDs are uniformly: ra
table for the 48 victim nodes. The number of contacts ardnéurt dom, on average, there are approximately 1099 & 1,000, 000)
divided by type and whether they were hijacked. At the begin- nodes WithcPL >— 10. The Svbil nodes are oh of éhesé 1000
ning of the experiment, the number of type 3 contacts is higtes nodes’ routing tat;es .The nuymber of back péinters withrtgino
all these contacts have just been discovered. As time Bsgse : R A - .
the number of type 3 contacts decreases, and the numberef typ _Cl_zﬁé‘ é(aertlapsh(l)ﬂcrzge;s::r}g sm%e éherle a"a motrt:a fqtetr.'t'ﬁl c;ﬁggl_dates
2 contacts increases. After 2 hours, the attacker startbijdek- y . gure () also show that, initiatly,
ing attack. The number of hijacked contacts increases Isapit be_r O.f back-pointers W'tm.DL <= 4 increases slower than Othefs-
then decreases as the victims recover slowly. The numbgpefa This is becayse nodes’ .h'gh levelbuckets are usually full, so it
contacts includes the number of hijacked contacts. We cathse taﬁz ?g)r:;(tj'gleaf%r Sbi);t)r:lc)rc;cédt%st:;ntq)el(gge f;gholfet\llqeel %%rgicéts
even after 8 hours, roughly 70% of the victim's contacts point work if it attracts asyman ueries aspa sta);of)e honest Hodéus
back to itself. Thesenresqlts suggest that. at the full nét\@oale, both Sybil and normal n)(/)cci]es should have thle same numb’ﬂehlof
zasgcond round of hijacking may be sufficient to fully discectn level back-pointers, wheree [0, log(N)) (Note that higher level
We also measured how the query success rate of the victims contacts are used more frequently than lower-level onesg:es)n_
changed in the course of the attack. Starting 6 minutes laftet- average, the number of contacts anq the number of backeps.lnj[
strapping, each victim sent a query to a randomly chosen keg o ?r]:ea Qggenae;\?vg;i ?ﬁ?ﬁé‘é"i sa?;iir?;?g&oiel%aitiuéi?lsgggﬂlo'
every 3 minutes, and recorded whether it successfully éotcat ointers and x 10 ith level ggck- ointers wheniec [5, log(IV))
replica root for the key. Figure 7 shows the results of thisasuee- Igollowing this argument, we con?pute tlaﬁectivenessbf g Sybil

ment. We can see that the fraction of successful queriesenes node (how many stable nodes it is equivalent to) as followsyia-
tially equal to the fraction of non-hijacked “Type 2" contsc In ing it hasm back-pointers wittC P L, i ¢ [1,m):

the full attack, the contacts of these nodes would also Hesseso

Number of Contacts
N

90

40

% Successful Queries

Figure 7: % Successful queries, over 20-minute windows

this experiment understates the impact of the attack. m
Finally, we recorded the cost, in bytes sent and receivetheof effectiveness= z «;, 9)
attack. The total number of bytes per victim sent by the kéac i=1
was 52,718, and the total number of bytes per victim receiyed L if CPL;, =0
the attacker was 74,992. Thus an attacker with 166 Mbps ohdow where o; = { 1q0 % 0.8 x 1 ’ else
160 . QCPLi—l

link capacity and 117 Mbps uplink capacity could complete th
reflection attack on the entire Kad network in one hour, wighyv New nodes that just joined the network are not included.

w
3

2500
2 h Mg 3
gzooo— [/ =
= / \ i/l 5 n 25
oc: v 1"'\ o g
L ,fw/ / ~ c ol
<1500 / | x =
& on\ 2 5 =
ey v S 1.5}
‘510007 S k9]
o = =
[} 5] i} 1+
o) Qo
E 500t 2 E
2 z 05
0 ‘ ‘ ‘ ‘ 0 ‘ :
0 50 150 0 50 150 0 50 150

100
Time (hours)
(a)Total

100
Time (hours)
(b) Average, clustered IGPL

] 100
Time (hours)
(c) Effectiveness

Figure 8: Sybil Attack Measurement: 28 Sybil nodes run for one week. (ashows the total number of back-pointers. One line represes one node.
(b) shows the average number of back-pointers clustered byne common prefix length CPL) between the Sybil node’s ID and the back-pointer’s ID.
(c) shows the average of Sybil nodes’ effectiveness compditeith formula (9)

Figure 8 (b) shows that the effectiveness of a Sybil nodeheadt
after approximately 24 hours. Then, the effectivenessasxs lin-
early and reaches 3.5 after 162 hours (almost a week). Arlrgea
gression with intercept 0 gives the slope of this lin@ a2 effective
nodes per Sybil node-hour, wigitvalue0.014 and mean squared
error0.12. Thus we estimate that, to control 40% of the backpoint-
ers in Kad, a naive Sybil attack will require roughi§0, 000/0.02 =
20 million Sybil node-hours. Clearly backpointer hijackingae
matically reduces the wall-clock time and bandwidth exjieme
necessary to attack Kad.

6.2 Index Poisoning Attack

In the index poisoning attack [16], an adversary insertssiaas
numbers of bogus bindings between targeted keywords areknon
istent files. The goal is that when a user searches for a fikewh

find as many or more bogus bindings as bindings to actual files.

For instance, if every legitimate binding is matched withogls
binding, then 50% of her search results are useless; if there
three bogus bindings for every legitimate binding, then t&%er
search results are useless.

word search and one will be a legitimate entry. Furthermore,
dex poisoning does not interfere at all with the underlyiogting
mechanism, so DHT lookups related to joins, leaves, andngut
table maintenance proceed without disruption. Attacketam
our method affect all DHT lookups equally.

7. MITIGATION

Our attacks rely on two weaknesses in Kad: weak identityeath
tication coupled with persistent IDs allow pointer hijanlfj so that
we can intercept many queries; while overaggressive rgutih
ways contacting the three closest contacts) allows us azhia
query once it has been intercepted. We will discuss measares
mitigate each of these weaknesses, as well as the extentith wh
they are incrementally deployable.

Identity authentication. Recall that the proposed attack is suc-
cessful because the malicious nddecan hijack an arbitrary entry
in A’s routing table (say, pointing t8) by sending aHELLO_REQ
to A with the fields(/ Dg, I Pum, portar). The attack can be miti-
gated through a number of means. The simplest is to simptg-dis
gard these messages when they would change the IP addréss and

This attack can also be applied to deny access to the keywordthe port of a pointer: if a node goes offline and comes back avith

search service provided by Kad, by targeting all existiray(ord,
file) pairs. As with our attack, this attack would involve tplases:
a preparation phase in which the attacker infiltrates thevorit
to learn all possible (keyword, file) pairs and an executibage
to insert three bogus (keyword, file’) pairs for every pairtire
network. Thus the bandwidth complexity of the attack degend
on the number of bindings currently in the network and the et
which bindings must be refreshed.

To estimate the number of (keyword, file) bindings in the Kad
network, we joined 256 nodes with uniformly distributed I1@s
the live Kad network, and recorded all "publish" messagesived

different IP address and/or port, it will be dropped from amyting
tables it is on, but can retain its own routing table.

Another lightweight mitigation technique is to “trust bugnify:”
When A receives a HELLO_REQ to updat®’s IP and port, it
sends a HELLO_REQ message(fdPs, portg) to see ifB is still
running with the previous IP and port. B (or some node) replies
to the HELLO_REQ, them! will not update its routing table. This
solution allows nodes to retain their routing tables aciogsca-
tions, and to stay on the routing tables of others after cingnid?
addresses. On the other hand, it does not completely elieniia
jacking: since Kad nodes have high churn rates, it is likbltt

by each node for one 24-hour period. Each publish messages ismany entries om’s routing table will be offline, and/ can ef-
a binding between a (hashed) keyword, a (hashed) file, ané som fectively hijack these entries. However, the cost of thacknow

meta-information such as the file name and size. To be camserv
tive, we ignored the meta-information and counted only thaier
of unique (keyword, file) hash pairs seen by each node. Tlaé tot

increases a8/ will expend time and bandwidth looking for offline
contacts. Both this technique and the previous one are ifuthe-
mentally deployable in that a client using these algoritioarsfully

number of such unique pairs seen by our 256 node sample wasinteroperate with current Kad nodes, and will be protectprest

2,000,000. Since the average size of publish message seam by
sample was 163 bytes, we estimate that publishing enouglystr
to cause 50% of all Kad bindings to be bogus would require4l4.7
MBps; to get to 75% the required bandwidth is 44.22 MBps. Due
to the fact that bindings are removed after 24 hours, thi$ isos
incurred continuously throughout the attack.

having its own routing table hijacked. However, these tépmes
do not protect against hijacked intermediate contactsrtigit be
returned by older clients during a query, or against Syhdckis
that claim an ID close to an expired routing table entry.

Limited protection from Sybil attacks can be obtained using
semi-certified identity, for example Node could usehash(I Pg)

Note that this attack has a cost roughly three times the dost 0 as its node 1}2 Here every ID is tied with the corresponding IP

our attack, and is also much weaker: on average, a determsmed

can simply try four of the bindings returned by a poisoned-key !?Several alternatives are possible: the 64 MSBs can be derive

Table 1: Comparison of identity authentication methods

Method Secure | Persistent ID] Incremental deployabld
Drop Hello with new IP/Port| Yes No Yes
Verify liveness of old IP No Yes Yes
ID=hash(IP) Yes No No
ID=hash(Public Key) Yes Yes No

address; clients should refuse to use contacts that do mettha
proper relationship between ID and IP address. This apprpes
vents routing table hijacking, and limits the set of IDs ataciter
can choose in a targeted attack. However, it is not increatlignt
deployable, and does not support mobility: if a node chaigesl-
dresses, it will need to rebuild its routing table and willdvepped
from the routing table of others.

Another alternative is that nodB useshash(PKpg) as its ID,
whereP K i is a public key.B can then either signits HELLO_REQ
when it changes its IP and/or port, or extra rounds (with npw o
codes) can be added to allow newer clients to authenticale no
IDs, while older clients continue to ignore the existencetha$
binding. In eMule, every node already generates its own pub-
lic/private key pair, used for an incentive mechanism sntib that
of BitTorrent. This solution allows all clients to retaineih exist-
ing routing tables. Newer clients will have only autheniézhcon-
tacts on their routing tables, while older clients will hdath types
of contacts. If intermediate contacts are also authewrtiatis
solution protects new clients from hijacked intermediaiatacts,
but requires a critical mass of peers running authenticeliedts.

It does not prevent chosen-ID attacks, although such attadk
carry higher computational costs due to the need to genpubie
keys that hash to a chosen ID prefix.

Table 7 summarizes the methods discussed above. Since-a miti

gation method must be secure and incrementally deployédbiep
HELLO_REQ with new IP” becomes the winner. In addition, this
method does not change the behavior of the Kad network. To sup
port this argument, we conducted an experiment recordiadréd

quency of HELLO_REQ messages with a new IP address and/or ,ce the nu

port. We joined 214 nodes to the Kad network and recorded/ever
HELLO_REQ with new IP and/or port. After 4.5 days, on average
each node had 5284 different contacts, of which only 17 1amst
(3.23%) were updated with a new IP and/or port.
Routing Corruption. Without some defense against Sybil attacks,
routing attacks are still possible even with the above mitan
mechanisms. Recall that routing attacks work in Kad becalise
though every node performs three parallel lookups, thoskules
are not independent. If nodé wants to perform a search, it will
send out three KADEMLIA_REQ to the closest nodeB (C, and
malicious nodeM) to the targetT” (in the XOR metric) thatA
knows about.M can “hijack” all three search threads by replying
to A with at least three contacts that are clos@toThis can be
mitigated by keeping the strands of a search separate: las&age
of the searchA should send a KADEMLIA REQ to the closest
contact it has not yet used in each strand. Note that it isiposs
ble that a thread of the lookup might “dead-end.” In this cate
should restart the thread from the earliest unused comactather
thread.A should not terminate a search until it has received a reply
to a SEARCH_REQ or timed out in each thread.

This routing algorithm mitigates, but does not eliminakes &f-
fects of routing attacks. Suppose that an attacker cord@s of
all of the backpointers in the current Kad network; then heusih
be able to prevent roughly 98% of all queries from succeeding
der the current routing algorithm — he has a 78% chance opstgp
the query at each hop — but could prevent only 45% of querieema
with the “independent thread” routing algorithm. At 10% aifcl-

from hash(IPg) and the 64 LSBs fronhash(IPg||portg) to
support NAT; if subnet-level attackers are a concern the &BM
can be derived fromhash(I Pg/24); etc.

pointers, these figures become 59.5% and 1.7%, respectidy
thus conclude that this technique is easy to incrementaplay
(and will immediately improve attack resistance for angwtithat
upgrades), and that it is critically important to implemaeritiga-
tion techniques for both weaknesses.

8. RECENT CHANGES

New versions of both the aMule and eMule clients have regentl
been released — aMule 2.2.1 on June 11, 2008 and eMule 0.49a
on May 11, 2008. Both clients use the same updated version of
the Kad (which we will call Kad2) algorithrt The main changes
which affect our attacks are described here.

Kad2 implements a flooding protection mechanism that limits
the number of messages processed from each IP addressafor ex
ple, a node can receive at most 1 KADEMLIA_REQ per IP address
every 6 seconds. While this mechanism increases the tinngreeq
to poll a single routing table, it does not increase the tiewuired
to poll the entire network, since an attacker can contactymades
in parallel while not exceeding the rate of 1 request per 6rsgs
at any individual node.

Each Kad node limits entries in its routing table by IP adslres
and /24 subnet. Clearly, this change prevents the refleatiaick
presented in Section 5. However, if backpointer hijackingtill
possible, an attacker who can spoof UDP packets can s#teff
tively partition the network into disjoint subsets of siz@09by
pointing all of the routing table entries of each partitiorttie other
members of the partition.

Finally, Kad2 includes code that may be used to prevent lijac
ing. The new code contains a boolean variable which indscate
whether entries in the routing table can be updated (chamdfe i
address). This variable can be set to false so that the emtree
never updated and this will prevent a hijacking attack (Thisur
first proposed mitigation method in Section 7 — "Drop Helldhwi
new IP/Port"). Since this variable is set to true currentty re-
mber of dead contacts and to enable long-liveelsrtod
continuously contribute to the network, although our meamients
indicate that such behavior is uncommon) it does not prelient
jacking attacks; we have empirically confirmed this by rungrthe
new client and successfully hijacking a single backpointer

The lastest eMule and aMule clients implemé&nbtocol Ob-
fuscation [22] by encrypting packets. A node sends different en-
cryption keys to different contacts in plaintext when thateats
are inserted into its routing table, and it stores these keyke
routing table along with the contacts’ protocol versions future
protocol versions, these encryption kegsild also be used to serve
as authentication tokens to prevent hijacking attackse timt an
attacker cannot utilize clients’ backward compatibility lypass
the authentication step because the contacts’ protocsiorer are
recorded in the routing table. In this case, although itilbpissi-
ble, the hijacking attack is much harder to launch since &tletr
needs to intercept the communication between honest nodes.

In summary, the latest Kad clients implement several festur
which could be used in future versions to mitigate our attétbw-
ever, the current version only slightly increases the cbsiuo at-
tack. We still need only 1 IP address with the same network and
storage resources to crawl the whole Kad network and calhect
routing tables of all nodes. To hijack backpointers, ouackttnow
requires 1 IP address per hijacked contact. For exampldjackh
30% of the top level buckets3(out of 10 contacts in each bucket)
in each routing table (see Footnote 8) — stopping more @héhof
queries —now requires« 11 (top-level buckets¥ 33 IP addresses.
Note that the sam83 IP addresses can be used for all of the hi-
jacked backpointers since IP filtering is done locally forteaode.

BBoth clients still support the old Kad protocol for backwaa-
patibility.

9. RELATED WORK

Since Kademlia [20] was introduced in 2001, several vaneti
have been implemented, including the discontinued Oveandt
eDonkey2000 projects, and also the separate eMule [11]iea
and MLDonkey projects. Kademlia is in use by several popular
BitTorrent clients as a distributed tracker [2, 18, 3]. BesmKad
seems to be the largest deployed DHT, several studies haze me
sured various properties of the network. Steieeal. [27] crawl
the Kad network and report that most clients only stay foratsh
period and only a small percentage stay for multiple weekstew
Stutzbach and Rejaie measured the lookup performance f@ll] a
churn characteristics [32] of the deployed Kad network. &loh
these works address the security of Kad.

Sit and Morris [26] present a taxonomy of attacks on DHTs and
applications built on them. They further provide desigmgpiples
to prevent them. Lyncht al. [17] propose to use a Byzantine Fault
Tolerance replication algorithm to maintain state infotiora for
correct DHT routing. The Sybil attack has been studied by sev
eral groups [14, 9]. Two Sybil-resistant schemes based oialso
links were recently proposed in [19, 7]. Casttoal. [4] design
a framework for secure DHT routing which consists of secire |
generation, secure routing table maintenance, and se@ssage
forwarding. Fiat and Saia [12, 23] give a protocol for a “contt
addressable” network that is robust to node removal. Kobiat
icz [15] make Pastry and Tapestry robust usivide paths, where
they add redundancy to the routing tables and use multiplieso
for each hop. Fiagt al. [13] define aByzantine join attack model

where an adversary can join Byzantine nodes to a DHT and put

them at chosen places. Singhal. [25] observe that a malicious
node launching an eclipse attack has a higher in-degreétiveast

nodes. They propose a method of preventing this attack by en-

forcing in-degree bounds through periodic anonymous itigied
auditing. Condieet al. [6] induce churn to mitigate eclipse attacks.
Liang et al. [16] report that substitution of “fake contemt’place of
the desired values on the KaZaA P2P network is prevalentlboit a
detectable. Naoumov and Ross [21] proposed to exploit @tern
as a DDoS engine with index poisoning and the generic rotiéing
ble poisoning. El Defrawyt al. [8] proposed to misuse BitTorrent
to launch DDoS attacks. While several of these works report o
DHT routing attacks, none address Kad or Kademlia spedifical
and none are tested on a widely-deployed DHT.

10. CONCLUSION

We have demonstrated that it is possible for a small nhumber of (23]

attackers, using approximately 100 Mbps of bandwidth, toyde
service to a large portion of the Kad network. By contrastedi
DDoS to the same number of hosts would require roughly 1 Thps o

bandwidth, assuming an average downstream capacity of 5Mbp [27]
per Kad node. Moreover, we showed that our attacks are mere ef

ficient than currently known attacks (Sybil and Index Poisgh
These attacks highlight critical design weaknesses in Kaduich
can be partially mitigated.

Even with the recent security updates to Kad, we have shosn th
our attack still works using nearly the same resources. Mewan
easy change to the code can prevent hijacking attacks.

Acknowledgements. We are grateful to Hendrik Breitkreuz for
helpful discussions about the latest versions of the KaahtliThis
work was funded by the NSF under grant CNS-0716025.

11. REFERENCES

[1] aMule networkhtt p: // ww. amul e. or g.
[2] Azureus. http://azureus.sourceforge.net.
[3] BitComet. http://www.bitcomet.com.

[4] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON A., AND

WALLACH, D. S. Secure routing for structured peer-to-peer overlay

networks. InOSDI (2002).

CHUN, B., CULLER, D., ROSCcOE T., BAVIER, A., PETERSON L.,

WAWRZONIAK, M., AND BOWMAN, M. Planetlab: an overlay

testbed for broad-coverage servic&igicomm Comput. Commun.

Rev. (2003).

CONDIE, T., KACHOLIA, V., SANKARARAMAN , S.,

HELLERSTEIN, J.,AND MANIATIS, P. Induced churn as shelter

from routing table poisoning. INDSS (2006).

DANEZIS, G., LESNIEWSKILAAS, C., KAASHOEK, M. F.,AND

ANDERSON R. Syhil resistant DHT routing. IESORICS (2005).

DEFRAWY, K. E., GIOKA, M., AND MARKOPOULOU, A.

Bottorrent: Misusing BitTorrent to Launch DDoS Attacks.Usenix

SRUTI (June 2007).

[9] DoucCEUR, J. R. The sybil attack. IRroc. of the IPTPS02 (2002).

[10] eDonkey networkht t p: / / waww. edonkey2000. com

[11] eMule networkht t p: // www. enul e- proj ect . net .

[12] FIAT, A., AND SAIA, J. Censorship resistant peer-to-peer content
addressable networks. 8DDA (2002).

[13] FIAT, A., SAIA, J.,AND YOUNG, M. Making chord robust to
byzantine attacks. IESA (2005).

[14] FRIEDMAN, E.,AND RESNICK, P. The Social Cost of Cheap
Pseudonymsl. of Economics and Management Srategy (2001).

[15] HiLDRUM, K., AND KuBIATOWICZ, J. Asymptotically efficient
approaches to fault-tolerance in peer-to-peer networkBl 8C
(2003).

[16] LIANG, J., KUMAR, R., X1, Y., AND R0OSS K. W. Pollution in P2P
file sharing systems. INFOCOM 05 (2005).

[17] LYNCH, N., MALKHI, D., AND RATAJCZAK, D. Atomic data

access in content addressable network$PTFPS (2002).

Mainline. http://www:.bittorrent.com.

MARTI, S., GANESAN, P.,AND GARCIA-MOLINA, H. DHT

Routing Using Social Links. 1°2PDB (2004).

MAYMOUNKOV, P.,AND MAZIERES, D. Kademlia: A peer-to-peer

information system based on the xor metricl FiTPS (2001).

NAouMov, N., AND Ross, K. Exploiting P2P systems for DDoS

attacks. InnfoScale ' 06: Proceedings of the 1st international

conference on Scalable information systems (2006).

Protocol Obfuscation.

http://ww. emul e- proj ect. net/ hone/ perl/ hel p.

cgi ?1 =1& n¥show_t opi c&t opi c_i d=848.

SaAIA, J., HAT, A., GRIBBLE, S., KARLIN, A., AND SAROIU, S.

Dynamically fault-tolerant content addressable netwolk$PTPS

(2002).

SINGH, A., CASTRO, M., DRUSCHEL, P.,AND ROWSTRON A.

Defending against eclipse attacks on overlay networkEVii1

(2004).

SINGH, A., NGAN, T.-W. J., , DRUSCHEL, P.,AND WALLACH,

D. S. Eclipse attacks on overlay networks: Threats and deferin

Infocom (2006).

SIT, E.,AND MORRIS, R. Security Considerations for Peer-to-Peer

Distributed Hash Tables. PTPS (2002).

STEINER, M., BIERSACK, E. W.,AND EN-NAJJARY, T. Actively

Monitoring Peers in KAD. InPTPS07 (2007).

STEINER, M., EFFELSBERG W., EN NAJJARY, T., AND

BIERSACK, E. W. Load reduction in the KAD peer-to-peer system.

In DBISP2P 2007, 5th International Workshop on Databases,

Information Systems and Peer-to-Peer Computing, September, 24,

2007, Vienna, Austria (Sep 2007).

STEINER, M., EN NAJJARY, T., AND BIERSACK, E. W. Analyzing

peer behavior in KAD. Tech. Rep. EURECOM+2358, Institut

Eurecom, France, Oct 2007.

STEINER, M., EN-NAJJARY, T., AND BIERSACK, E. W. A global

view of kad. InIMC ' 07: Proceedings of the 7th ACM SGCOMM

conference on Internet measurement (New York, NY, USA, 2007),

ACM, pp. 117-122.

STUTZBACH, D., AND REJAIE, R. Improving lookup performance

over a widely-deployed DHT. linfocom 06 (2006).

STUTZBACH, D., AND REJAIE, R. Understanding churn in

peer-to-peer networks. IMC ' 06: Proceedings of the 6th ACM

S GCOMM conference on Internet measurement (2006).

(6]

(7]
(8]

(18]
[19]

[20]

[21]

[22]

(23]

[24]

[26]

(28]

[29]

[30]

(31]

(32]

